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Tiivistelmä

Lappalainen, Panu
Title in english
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2021, 73 sivua

Tässä tutkielmassa kehitetty uudenlainen Kalvo-ohjelmisto simuloi monikerroksisten
sylinterireikähilaisten fononikidekalvojen dispersioita äärelliselementtimenetelmää
(FEM) käyttäen. Havainnollistavan systemaattisen fononikidetutkimuksen simulaa-
tioissa käytettiin neljää erilaista laboratoriossa usein käytettyä materiaalia: piinitri-
diä (Si3N4), alumiinioksidia (Al2O3), polystyreeniä (PS) ja lyijyä (Pb). Vastaavan
laajuista systemaattista tutkimusta ei ole aiemmin kyetty tekemään.

Aiemmista simulaatioista tunnetaan, että sylinterireikäisellä Si3N4-fononikiteellä,
jonka täyttöaste F = 0.7, hilavakio a = 1000 nm ja kalvonpaksuus hSi3N4 = 400 nm,
on spektriaukko, jonka suhteellinen koko w/M ≈ 0.202. Osoittautui, että tätä
spektriaukkoa on mahdollista laajentaa lisäämällä kalvoon kerros toista materi-
aalia. Ohjelmistoa käyttäen löydettiin uusi rakenne, jolla hilan spektriaukon suh-
teelliseksi kooksi saatiin simuloitua ≈ 0.234 (kun F = 0.7) käyttäen Si3N4–Al2O3-
kaksikerroskalvoa, jonka hSi3N4 = 340 nm ja hAl2O3 = 130 nm. Tällä materiaali-
konfiguraatiolla on spektriaukko vain kun F > 0.58. Tämä spektriaukko laajenee
nopeasti täyttöastetta kasvatettaessa, kunnes F > 0.68, minkä jälkeen aukon laa-
janemistahti hidastuu merkittävästi. Si3N4-kalvon spektriaukkoa ei saatu laajennet-
tua polystyreeni- tai lyijykerroksilla. Fononikiteen dispersiorelaatiot muuttuvat, jos
toinen kaksikerroskalvon materiaaleista jaetaan kahtia ympäröimään toista materi-
aalia, eritoten jos jaettava materiaali on jäykempi kahdesta. Esimerkiksi Si3N4–PS-
ja PS–Si3N4–PS-kalvoilla on spektriaukko, kun hPS : hSi3N4 = 1 : 10 ja F = 0.7,
mutta vastaavalla Si3N4–PS–Si3N4-kalvolla ei.

Ohjelmisto osoittautui hyödylliseksi monikerroksisten fononikiteiden dispersiore-
laatioiden systemaattiseen tutkimukseen.

Avainsanat: työn avainsanat, pilkulla eroteltuna
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Abstract

Lappalainen, Panu
Työn otsikko
Master’s thesis
Department of Physics, University of Jyväskylä, 2021, 73 pages.

This thesis introduces Kalvo, a new type of software developed for simulating the
dispersions of multilayered phononic crystal membranes with a cylindrical hole lat-
tice, using the finite element method (FEM). The simulations in a demonstrative
systematic study used four different materials commonly used in laboratory: sili-
con nitride (Si3N4), aluminum oxide (Al2O3), polystyrene (PS) and lead (PS). A
systematic study of this scale has not been possible before.

It is known from prior simulations that a Si3N4 phononic crystal with cylindrical
hole lattice, filling factor F = 0.7, lattice constant a = 1000 nm and Si3N4 membrane
thickness hSi3N4 = 400 nm, has a relative band gap w/M ≈ 0.202. Using the software,
it was found out that this band gap could be increased to ≈ 0.234 (for F = 0.7),
by using a Si3N4–Al2O3 dual layer membrane with hSi3N4 = 340 nm and hAl2O3 =
130 nm. For this configuration of materials, the band gap exists only when F > 0.58.
This band gap widens rapidly as filling factor is increased, until F > 0.68, after which
the rate of increasing decreases significantly. The Si3N4 membrane’s band gap could
not be widened with layers of polystyrene or lead. The band structure of a phononic
crystal is changed if one of the materials in a dual layer membrane is distributed
into two layers surrounding the other material, especially if the stiffer of the two
materials is distributed. For instance, a band gap exists for a Si3N4–PS and PS–
Si3N4–PS membranes with hPS to hSi3N4 ratio of 1 : 10 and F = 0.7, but not for
Si3N4–PS–Si3N4.

The software proved to be useful for systematically studying the band structures
of multilayered phononic crystals.

Keywords: english keywords, seprate by colon
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Introduction
Heat is nice. On a cold winter day, one may spend a lot of firewood or electricity

to heat up a sauna, often to very high temperatures, in order to enjoy the hot steam.
However, too much heat in the wrong place can be problematic. For instance, it is
a good idea to isolate the heat from getting into other rooms, such as the bedroom,
in order to guarantee a good night’s sleep.

Condensed matter physics is a field of natural sciences that studies the micro-
scopic and macroscopic physical properties of matter, especially solids and liquids.
One of the properties studied is thermal conductivity, a material’s ability to conduct
heat. Materials with high thermal conductivity are called conductors, whilst those
with low thermal conductivity are called insulators. Different materials are desirable
for different applications, and sometimes conduction or insulation is only required
for a certain range of frequencies.

It is possible to design and develop materials with very specific properties. How-
ever, obtaining the materials and fabricating the structures, especially in nano scale,
can be rather expensive and time consuming. Hence, finding suitable material con-
figurations by means of trial and error is experimentally unpractical. On the other
hand, the chaotic nature of the phonon dispersions makes purely theoretical ap-
proach difficult. (Some partial differential equations can be impossible to solve an-
alytically, thus only approximate numerical solutions can be found for them.) The
software introduced in this thesis can be used to computationally find, simulate and
study such crystal membrane structures systematically before physically fabricating
them.

1 Metamaterials

Not all materials are created equal. Despite two materials sharing the same chemical
formula, their physical properties can still vary. This can be explained with differ-
ences in their crystalline structure. These varieties of material are called allotropes,
and many examples exist in nature. Diamond and graphite, for instance, both con-
sist of pure carbon, yet diamond is much harder with higher thermal conductivity
and lower electrical conductivity than graphite. [Royer-Dieulesaint-2000]

Metamaterials (from Greek, “beyond matter”) are materials engineered to have
benefits beyond those of naturally occurring materials. They are usually precision
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manufactured to contain repeating patters that can be at a scale smaller than the
wavelength of the phenomenon they influence, such as sound or electromagnetic
waves. Metamaterials can have peculiar properties, e.g. negative refraction, super-
lensing or even programmability. [Cui-2014]

The history of metamaterials can be traced all the way back to the 19th century,
beginning around 1888 with Heinrich Hertz demonstrating the interactions of metals
and radio waves, eventually leading to the artificial dielectrics, a type of fabricated
composite materials. The first “metamaterials” were designed after the Second
World War, to interact with radio and microwave frequencies in the early antenna
and waveguide technologies. [Ramsay-1958]

2 Crystals and Acoustic Metamaterials

Crystal lattices have their constituents arranged in a highly ordered microscopic
structure. Phonons are collective excitations of the constituents in crystals and
in other condensed matter with periodic and elastic arrangements of constituents.
Thermal phonons, among other factors, are responsible for conduction of heat in
crystals. The behaviour of these phonons is highly dependent on the crystal structure
of the lattice. Artificial crystals, the topic of interest in this work, differ from natural
crystals in being made by technology or craft. [Kittel-1996, Laude-2020]

Phononic crystals, often PnCs for short (not to be confused with PCs, photonic
crystals), are designed to manipulate sound waves or phonons in a desired way. For
instance, thermal properties of a material are affected by the conductivity for differ-
ent frequencies of phonon waves. This is often plotted in a band structure dispersion
spectrum of the lattice. Since crystals have a highly ordered structure, their thermal
behaviour can be very accurately simulated computationally by calculating the dis-
persions of the phonons. The dispersion frequencies are obtained by applying Bloch’s
theorem on a unit cell in the reciprocal lattice space. The unit cell is a repeating
unit that can be used to describe the crystal structure of a material. Producing
approximations for the frequencies involves solving partial differential equations in
three space variables. [Li-Wen-Sheng-2021]

One application of these materials is acoustic cloaking, which aims to make an
object “invisible” to sound waves by covering it with anisotropically elastic materi-
als. This can be done with a coordinate transformation method, but a viable cloak
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requires the optimal topology and materials with extreme properties. In 2017, Mén-
dez et al. used a topological derivative and the level set function based topology
optimization technique to design and synthesize such a device, noting the key signif-
icance of the external shape of the prescribed domain of the optimization. Acoustic
cloaking has potential uses in stealth technology and in concert hall or household
sound proofing solutions. [Mendez-2017]

3 Heat in Low Temperature Regime

In extremely low temperatures, the impact of thermal fluctuations is amplified. Pho-
nonic crystals, especially ones with large band gaps in the band structure, have many
useful applications here. (Moreover, the size of the band gap width-to-midpoint ra-
tio matters, as the band structure can be scaled!) The thermal phonons with long
wavelengths mainly populate in low temperatures; when the surface features of the
medium are small compared to the phonon wavelength, the phonons can be treated
as ballistic waves whose propagation and speed can be manipulated. Phononic
crystals fabricated in a suspended membrane can significantly reduce the thermal
conductance in sub-Kelvin temperatures.

Low temperature detectors, such as microwave kinetic inductance detectors
(MKIDs), have been shown to benefit from nanoscale phononic crystals tailored for
them. MKIDs are extremely sensitive non-bolometric photon detectors, which work
by creating quasiparticles via the incident photons breaking Cooper pairs. However,
the quasiparticles quickly recombine back into Cooper pairs, and the emitted pho-
tons escaping the system limit the responsivity of the detector. In 2020, Puurtinen
et al. demonstrated that a composite phononic crystal reached a power attenuation
of 40 dB, effectively increasing the quasiparticle lifetime by two orders of magnitude.
[Puurtinen-2020]

In the low-temperature phononic crystal studies in the Nanoscience Center at
the University of Jyväskylä, a phononic crystal is “built” around the sample, by fab-
ricating and etching a phononic crystal structure around superconductor–insulator–
normal metal–insulator–superconductor tunnel junction (SINIS), in the same mem-
brane. The etching can be performed with electron beam lithography. These pho-
nonic crystal structures have been demonstrated to have smaller conductivity than
the membrane, mainly due to the band structure and the presence of certain band
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gaps. [Tian-2016]

4 Motivation
It should be noted that even though theoretical structures can have unfathomable
properties that natural materials lack, they can be practically impossible to manu-
facture. Developing a realistically viable phononic crystal with specific desired prop-
erties requires simulating multiple configurations of structures with real material pa-
rameters, all whilst taking into account the limitations in fabrication. [Lucklum-Vellekoop-2017]

Thus, the aim of this work is

1. to develop a lightweight, user-friendly software that can be used for fast sys-
tematic analysis of phononic crystal membranes, and

2. to demonstrate the software by using it to increase the band gap of a known
phononic crystal through a systematic study involving realistic materials.

The numerical method used in this thesis is the finite element method (FEM),
which solves the problem by subdividing the system into smaller parts. In the soft-
ware created in this work, a mesh of the unit cell is created using hexahedral elements.
(Hexahedron is a six-faced polyhedron, e.g. a cube.) The mesh is constructed and
solved using the Lawrence Livermore National Laboratory C++ library MFEM and
associated tools. [Zienkiewicz-2013, Anderson-2021, Kolev-Dobrev-2010]

The software introduced in this work, Kalvo (Finnish for “membrane”), is specif-
ically tailored to solve the dispersions of a single- or multilayered phononic crystal
membrane. A systematic study of multilayered phononic crystals has not been done
before and few other tools exist that could be used for this task. The commercial
COMSOL Multiphysics® is one of the tools often used in computational studies, one
such by Jia et al. in 2018, to design phononic crystals with wide band gaps. However,
(unlike with COMSOL Multiphysics®) with the Kalvo software the 3D mesh does
not need to be modelled by the user, but is instead generated automatically from
the given parameters. This is one of many advantages of this software as it can be
run entirely with a command prompt and is thus Bash-scriptable, opening avenues
for quickly checking the dispersions of different structures on a cluster computer.
[Comsol-2020, Jia-2018]
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Theory

5 Applying Bloch’s Theorem

For a crystal lattice, according to the Bloch’s Theorem, a periodic function u with
the same periodicity as the crystal modulates the plane wave ψ describing the
Schrödinger equation of the lattice,

ψ(r) = u(r)eιk·r (1)

where r is the position, k the wave vector and ι the imaginary unit. [Ibach-Luth-2009]
In a membrane that is periodic in the two horizontal dimensions, x and y, this

means that for a unit cell,

u
∣∣∣∣
B

= u
∣∣∣∣
B′

exp(ι(kxx+ kyy)) (2)

where B′ is the boundary opposite to B and kx and ky are the wave vector compo-
nents in the x- and y-direction, respectively. Therefore, by labelling the horizontal
boundaries of the unit cell clockwise from 1 to 4,

u
∣∣∣∣
B1

= u
∣∣∣∣
B3

exp(ι(kxx+ kyy)), u
∣∣∣∣
B2

= u
∣∣∣∣
B4

exp(ι(kxx+ kyy)). (3)

6 Linear Elasticity of Crystals

Derived from the mechanical equilibrium, Hooke’s law and Cauchy’s strain tensor,
for isotropic and homogeneous materials, the Navier–Cauchy equation can be ap-
plied,

µ∇2u + (µ+ λ)∇(∇ · u) = ρ
∂2u
∂t2

, (4)

where ρ is the material density and λ and µ are Lamé parameters derived from
Young’s modulus E and Poisson’s ratio ν such that

λ = Eν

(1 + ν)(1 − 2ν)
,

µ = E

2(1 + ν)

(5)
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and u(x,y,z,t) is the displacement vector with components ui exp(ι(kxx+kyy+kzz−
ωt)) where i = 1,2,3. [Palermo-Marzani-2020, Li-Wen-Sheng-2021]

Thus, assuming a solution u with components ui exp(−ιωt), substitution into
Equation 4 yields the constant ω2 from the exponent and the exponent term can be
divided out. Therefore the components of Equation 4 can be presented as

µ

(
∂u11

∂x
+ ∂u12

∂y
+ ∂u13

∂z

)
+ (λ+ µ)∂(u11 + u22 + u33)

∂x
= −ρω2u1

µ

(
∂u21

∂x
+ ∂u22

∂y
+ ∂u23

∂z

)
+ (λ+ µ)∂(u11 + u22 + u33)

∂y
= −ρω2u2

µ

(
∂u31

∂x
+ ∂u32

∂y
+ ∂u33

∂z

)
+ (λ+ µ)∂(u11 + u22 + u33)

∂z
= −ρω2u3

(6)

where
u11 = ∂u1

∂x
, u12 = ∂u1

∂y
, u13 = ∂u1

∂z
,

u21 = ∂u2

∂x
, u22 = ∂u2

∂y
, u23 = ∂u2

∂z
,

u31 = ∂u3

∂x
, u32 = ∂u3

∂y
, u33 = ∂u3

∂z
.

(7)

This is known as the strong form.

Solving this system numerically with FEM requires the equation to be trans-
formed into the weak form. This transformation can be performed by first multi-
plying each component by a test function v∗

i , integrating over the solution domain
Ω and moving one of the derivation operations in each term onto the test functions
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using Green’s first identity. [Laude-2020, Strauss-2007]

∫
Ω

− µ

(
∂v∗

1
∂x

∂u1

∂x
+ ∂v∗

1
∂y

∂u1

∂y
+ ∂v∗

1
∂z

∂u1

∂z

)

− λ

(
∂v∗

1
∂x

∂u1

∂x
+ ∂v∗

1
∂x

∂u2

∂y
+ ∂v∗

1
∂z

∂u3

∂x

)

− µ

(
∂v∗

1
∂x

∂u1

∂x
+ ∂v∗

1
∂y

∂u2

∂x
+ ∂v∗

1
∂x

∂u3

∂z

) =
∫

Ω
−ρω2v∗

1u1

∫
Ω

− µ

(
∂v∗

2
∂x

∂u2

∂x
+ ∂v∗

2
∂y

∂u2

∂y
+ ∂v∗

2
∂z

∂u2

∂z

)

− λ

(
∂v∗

2
∂x

∂u1

∂y
+ ∂v∗

2
∂y

∂u2

∂y
+ ∂v∗

2
∂z

∂u3

∂y

)

− µ

(
∂v∗

2
∂y

∂u1

∂x
+ ∂v∗

2
∂y

∂u2

∂y
+ ∂v∗

2
∂y

∂u3

∂z

) =
∫

Ω
−ρω2v∗

2u2

∫
Ω

− µ

(
∂v∗

3
∂x

∂u3

∂x
+ ∂v∗

3
∂y

∂u3

∂y
+ ∂v∗

3
∂z

∂u3

∂z

)

− λ

(
∂v∗

3
∂x

∂u1

∂z
+ ∂v∗

3
∂y

∂u2

∂x
+ ∂v∗

3
∂z

∂u3

∂z

)

− µ

(
∂v∗

3
∂z

∂u1

∂x
+ ∂v∗

3
∂z

∂u2

∂y
+ ∂v∗

3
∂z

∂u3

∂z

) =
∫

Ω
−ρω2v∗

3u3

(8)

Since this form of the equation lacks the time-dependent term, using the Floquet-
Bloch Theorem, solutions for this system can be found in the form

ui = exp(−ιk ·X)Ui, (9)

where k = (kx,ky,kz) is the wave vector, Ui are periodic functions in Ω and X =
(x,y,z). It can also be assumed that the test function v∗

i is of the same form,

v∗
i = exp(ιk ·X)Vi, (10)

where the exponential term has a positive sign, due to complex conjugation. This
will cause the exponential factors to cancel out at the end. [Garcia-Alvarez-2015]

The derivatives for ui and v∗
i can be calculated and substituted into Equation 8.

In the left-hand side of the first component, for the terms with no derivatives this



22

is ∫ (
(k2

x(λ+ 2µ) + k2
yµ)V1U1 + kxky(λ+ µ)V1U2

)
, (11)

for the imaginary terms with one derivative

∫
Ω

(
kx(λ+ 2µ)∂V1

∂x
U1 − kx(λ+ 2µ)∂U1

∂x
V1

+kyµ
∂V1

∂y
U1 − kyµ

∂U1

∂y
V1

+kyλ
∂V1

∂x
U2 − kyµ

∂U2

∂x
V1

+kxµ
∂V1

∂y
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∂U2

∂y
V1

+kxµ
∂V1

∂z
U3 − kxλ

∂U3

∂z
V1

)
ι
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and for the second derivative terms (the “Navier-Cauchy terms” for the Bloch wave
coefficient functions Ui)

∫
Ω

µ(∂V1

∂x

∂U1

∂x
+ ∂V1

∂y

∂U1

∂y
+ ∂V1

∂z

∂U1

∂z

)

+λ
(
∂V1

∂x

∂U1

∂x
+ ∂V1

∂x

∂U2

∂y
+ ∂V1

∂z

∂U3

∂x

)

+µ
(
∂V1

∂x

∂U1

∂x
+ ∂V1

∂y

∂U2

∂x
+ ∂V1

∂x

∂U3

∂z

).
(13)

7 Generalized Eigenvalue Problem

The linearization of the weak form can be done by using e.g. the variational method
or the Galerkin method. In this work, the linearization of the weak form is performed
internally, using the built-in classes and methods of the MFEM library, which uses
the variational method. The exhaustive process of transforming the weak form into
matrix form with methods including the Galerkin method is explained well in the lit-
erature of the Polish-British FEM pioneer Olgierd Zienkiewicz. [Zienkiewicz-1977,
Zienkiewicz-2013]

As a brief summary of the variational method, the solution domain Ω is dis-
cretized into a finite mesh Ωh and the linear combination of Ωh basis functions is
substituted into the weak form. The basis functions are also selected as the test
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functions. In order to obtain a linear system, using the linearity of the summation,
the weak form is manipulated such that the integration applies to the basis functions
and their derivatives. As the basis functions and their derivatives are known, their
integrals can be computed, thus only a linear system of equations remains. Now,
two square matrices are defined from this system, A (stiffness) andM (mass), which
are functions of kx, ky and the material parameters. [Zienkiewicz-Morgan-1983]

Hence, the eigenfrequencies for the band structure of the material can be com-
puted from the obtained generalized eigenvalue problem

Ax = ω2Mx, (14)

where x is the eigenvector and ω2 is a scalar known as the eigenvalue, the root of
the characteristic polynomial. Since f = ω

2π
is the eigenfrequency of the phonon, by

solving the eigenproblem for a range of values in k-space, the band structure can be
plotted. [Laude-2020]

8 Phonon Dispersion

The natural modes of periodic media are known as Bloch waves. Their propagation
rate ω/k is called the phase velocity, and the propagation velocity of the overall
envelope of their amplitudes dω/dk is called the group velocity, required for thermal
conductivity calculations. Their dispersion properties can be presented with band
structure diagrams, which plot these eigenmodes with reference to the first Brillouin
zone of the medium. For thin crystal membranes, the waves in the two horizontal
dimensions are usually studied. Since plotting the dispersion behaviour in all of
k-space would yield a three-dimensional diagram (which is sometimes used) the
dispersions are often plotted along a path through the irreducible Brillouin zone
(IBZ), shown in Figure 1. [Laude-2020]

In thin membranes, the phonons traversing along the “planar” dimensions (x and
y) of the geometry are the topic of study in this work. Hence, the main symmetry
points of interest are:

• Γ (“Gamma”), the center of the Brillouin zone;

• X, the center of a face;
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Figure 1. The first Brillouin zone of a material with lattice constant a. Here,
for a membrane with rotational and reflection symmetry of order 4, the irre-
ducible Brillouin zone is highlighted in yellow, with a grey path connecting the
corner points of the IBZ triangle labelled as Γ, X and M .
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• M , the center of an edge.

For membranes with rotational and reflection symmetry of order 4, these three
symmetry points are sufficient. For full membranes (as there are infinite symmetry
axes), the behaviour is the same regardless of direction, requiring only two points.
This is clearly demonstrated in the band structure depicted in Figure 2, where the
x-axis comprises of the path from Γ to X, then to M and finally back to Γ. Notice
that since the reduced Brillouin zone selected is a right-angled isosceles triangle in
this case, the M–Γ section of the path is

√
2 times as long as the Γ–X and X-M

sections.
Band gaps occur when there are no propagating Bloch waves for a certain fre-

quency range, regardless of wave number (as seen in Figure 3 in the red area clear
of any modes). In these gaps, no propagation is possible for the range of frequencies
in any direction. Band gaps have endless potential practical applications, provid-
ing useful functionalities in e.g. mirrors, cavities, and waveguides. Membranes with
band gaps occurring in the band structure can be created with e.g. periodic hole
and pillar structures. Computationally studying band gaps formed by cylindrical
holes in square grid is the main focus of this work. [Laude-2020]

Whilst studying band structures, an important thing to note is the linear scalabil-
ity. Since the periodicity of artificial crystals is significantly greater than interatomic
distances (unlike in natural crystals), macroscopical analysis using the equations of
continuum mechanics can be performed for them. Although the results in this work
are mainly presented in the absolute units the simulations were performed in, they
can easily be scaled to desired frequencies by inversely scaling all of the parameters.
Figure 3 demonstrates how the frequencies of the entire band structure are scaled
down to half when all of the parameters are scaled up to double.

The precision of the band structure is determined by the k-space sampling reso-
lution, i.e. how many points in the k-space are computed for the plot. The number
of eigenfrequencies computed roughly translates to the number of modes in the plot.
For most eigenvalue solvers however (including the SLEPc used in this work), the
order the eigenvalues are computed in is inconsistent with the order of the modes.
Thus, in this work the obtained eigenfrequencies are sorted by frequency before
plotting. [Roman-2021]

Due to this, connecting the sorted data points with lines will never yield inter-
secting lines in the plot. Since the real modes overlap and cross over one another,
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Figure 2. The band structure of a silicon nitride and aluminum oxide mul-
tilayer full membrane with 90 nm of Si3N4 and 50 nm of Al2O3. (Here, the
symmetry points X and M are indicated with gray vertical bars, for clarity.)
Because the material is a full membrane, the modes between points Γ–X also
appear between points M–Γ (but as larger and in reverse order).
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Figure 3. The band structure of a Si3N4–Al2O3 multilayer membrane with
respective layer thicknesses hSi3N4 and hAl2O3 of 400 and 50 nm, lattice constant
a of 1000 nm and a cylindrical hole with radius r of 450 nm (left), compared to
same lattice with all parameters doubled (right), demonstrating the same band
structures in different scales. To aid comparison by eye, the x-axis scale of the
right diagram is half of that of the left one, and a band gap is highlighted in
red.
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the curves in the band structure cannot be singled out to represent a mode fully
through the path over the IBZ. This is clearly visible in Figure 3, where approaching
curves appear to “turn away” before ever intersecting; it uses the sampling resolu-
tion of 60, thus there are 61 frequency points per mode in the diagram (the values
at Γ on the right side are copied from the values at Γ on the left side). Increasing
the sampling resolution causes this type of visual artifacts to diminish (for reference,
Figure 2 has a sampling resolution of 1000). However, the computation time is
directly proportional to the sampling resolution.

Figure 4 demonstrates selecting a number of points in the IBZ path and the band
structure they can be used to produce. Using only this few points (7) is unreliable for
studying the shapes of the modes. However, it may have applications in searching
band gaps, since the local maxima and minima of individual modes are often located
at the corner points of the IBZ triangle.

Band gaps can be computationally found by sorting all computed eigenfrequen-
cies by frequency (for all of the computed points in k-space) and looking for big
separations between the values. The separation can be calculated by taking the ab-
solute value of the difference between the ith value and the (i− 1)th value. Should
the separation be greater than the acceptable minimum gap size, it can be counted
as a band gap. (A Python implementation of this is demonstrated in Appendix 2.)

The acceptable minimum gap size has to be selected carefully; a value too large
will neglect real band gaps, but a value too small will produce false positives. A
large sampling resolution will diminish this issue and allow using a small minimum
gap size. For the majority of the plots in this work, a k-space sampling resolution
of 60 and an acceptable minimum gap size of 108 Hz were used.

If a low sampling resolution is used, one way to get rid of false positives due to
small acceptable minimum gap size is to add intermediate points between the data
points via linear interpolation. These additional points lie on the lines connecting
the data points and thus do not disturb the band structure diagram. Performing this
does not increase the precision of the plot, but requires significantly less computation
power than using a higher sampling resolution. However, this method was not used
in this work as the aforementioned parameters were mostly sufficient.
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Figure 4. Selecting 7 points marked with fuchsia-coloured dots in the circum-
ference of the IBZ (left) and plotting them counter-clockwise, beginning and
ending with Γ, to produce the band structure (right) for a silicon nitride phono-
nic crystal with lattice constant a of 1000 nm, thickness h of 400 nm and filling
factor F of 0.7. With a sampling resolution this low, the lines connecting the
points do not accurately represent the modes. For comparison, see Figure 14,
which plots the same band structure with a sampling resolution of 60.
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Software

9 Code
The source code of the Kalvo software is written in C++ programming language
with supplementary programs written in Bash and Python. It utilizes Open MPI
message passing interface for parallelization and the finite element discretization li-
brary MFEM (version 4.1 or higher) together with algorithms of PETSc (“Portable,
Extensible Toolkit for Scientific Computation”, version 3.13.3 or higher) and its ex-
tension SLEPc (“Scalable Library for Eigenvalue Problem Computations”, version
3.13.3 or higher) for solving the eigenvalue problem from the partial differential
equations. Some MFEM integrator inspired integrators were coded specifically for
forming the matrices to solve this very eigenvalue problem, with METIS and hypre
libraries utilized in the matrices. The software should be compiled with the in-
cluded makefile, which utilizes mpicxx compiler wrapper (version 4.0.3 or higher)
expecting a gcc module of version 10.1.0 or higher. [Balay-2021, Gabriel-2004,
Kolev-Dobrev-2010, Roman-2021, Karypis-Kumar-1999, Falgout-Yang-2002]

The software also includes an installation guide and some parameter files. Below
is a comprehensible list of included files created for this software.

makefile Kalvo.cpp
cleeps.cpp cleeps.hpp
coolPrint.cpp coolPrint.hpp
material.cpp material.hpp
meshFactory.cpp meshFactory.hpp
settings.cpp settings.hpp
defaultSettings.txt install_guide.txt
k_points.txt materialParameters.txt
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The code uses standard C++ conventions and documentation style. Addition-
ally, in order to further aid future development, the code is heavily commented.
Due to the complex nature of creating the 3D geometry, some of the console out-
put and comment documentation utilizes ASCII visualization for added compre-
hensibility. For example, the hexahedral elements in MFEM are constructed from
the nodes (or the vertices) in different order depending on context. Thus, in the
MeshFactory::solveHexahedrons subroutine for instance, the construction order
is visualized in the comments followingly:

// Construct the 7-----6
// hexahedron with /| /|
// vertices from 4-----5 |
// bottom to top | 3---|-2
// anti-clockwise |/ |/
// in this order 0-----1

The software is used to solve the eigenfrequencies of a full membrane or a
membrane with a lattice of cylindrical holes in a rectangular grid. The mem-
brane can consist of one or more layers of materials. No other types of geometries
can currently be created using the software. However, by modifying the source
code, support for other geometry types, e.g. pillars, can be added with reasonably
little work. The updated code can be found at the project’s GitLab repository.
[Lappalainen-Puurtinen-2021]

10 Parameters
Upon running the program, several parameters can be given either in the command
prompt or in the default settings file. The default settings file parameters are used
for parameters not given in the command prompt; those given in the command
prompt override their default parameters. For each command prompt parameter
of Kalvo, the input string is always a single, case sensitive character, followed by
an equals sign (=) and the value. The value parameters containing multiple values
should have the values separated by a comma (,). Spaces are used to separate
different parameter strings. For instance, the parallel prompt could be

https://gitlab.com/nanopnc/pnc_dispersion
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mpirun -n 8 Kalvo a=200 h=50 r=65 m=Si3N4 e=8,,2 k=GXMG,50

where the mpirun command launches the job Kalvo in Open Run-Time Environment
(ORTE) with -n 8 setting the number of parallel processes as 8. The remaining
Kalvo parameters are explained in the subsections below.

10.1 Unit Cell Parameters

Three parameters directly affect the geometry of mesh: a, h and r (as demonstrated
by Figure 5). All of their values are in nanometers. The lattice constant a determines
the widths of the horizontal sides of the rectangular base of the unit cell. If a is
given two values, the values represent the width and breadth of two horizontal sides
(in x- and y-dimension). If a is given a single value, the base of the unit cell is a
square. (Only square base unit cells are in the scope of the study in this thesis.)

Each value of the thickness h represents the vertical height (z-dimension) of a
single material layer in the membrane, with their sum being the total thickness of
the unit cell. The number and order of values for h must correspond to the number
and order of materials in the lattice (parameter m).

The size of a cylindrical hole piercing through the normal of the lattice is con-
trolled with radius parameter r. When r=0, no hole is made (producing a full
membrane). It should be noted that the value of r must be less than half of the
smallest value of a, since the hole should not be larger than a single cell.

Alternatively, the filling factor F can be defined, in which case a value for r is
calculated with the formula r =

√
AF/π, where the area A is the product of the

width and breath of the unit cell (for square base A = a2). As F is used to determine
the value of r, only one of the two can be defined; the other one should be left 0.
When using F, r is dependent on the lattice constant a, making F useful for keeping
the relative hole size the same, when using different values of a. As with r, the
hole should not be larger than a single unit cell, thus F cannot be greater than
π/4 ≈ 0.785.

The size and number of the individual hexahedral mesh elements making up the
mesh is dependent on one of two parameters, e or s. Only one of the two should be
given, as it is used with a to calculate the value for the other. (The mesh elements
can be seen in Figure 8 as the smaller blue cubes.)

The number of mesh elements per unit cell side e always has three values, one for
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Figure 5. The three geometry parameters a, h and r labelled in a unit cell
with a lattice constant a of 200 nm, thickness h of 50 nm and hole radius r of
65 nm, defined with a=200, h=50 and r=65.

each dimension, with the first two being in the horizontal directions (x and y) and
the third one in the vertical (z). The total number of elements in a full membrane
mesh is the product of the values of e. As the third value of e determines the
number of “layers” of elements, it should be noted that the value cannot be smaller
than the number of materials, since each layer of material must be represented by
at least one layer of elements. Due to the construction of the periodic mesh, the
first two values of e must be 3 or more. If the second value is left blank, the first
value will be used for it (for instance e=8,,2 is equivalent to e=8,8,2), producing
a square base.

If instead the component hexahedron preferred size s is used, a value for e is
calculated such that each of the sides of a single undistorted element is as close
as possible to the value of s in nanometers. Smaller values of s result in larger
values of e. Since the finite element method grows better with increasing numbers
of elements, the precision of the calculation (along with computation time) increases
with larger values of e or smaller values of s.



35

10.2 Computational Parameters

The number of eigenvalues calculated is controlled with n. These (approximately)
correspond to the lowest n eigenfrequencies in a given point in k-space where n is
the value of n. (This is “approximate”, because the computed eigenvalues are not
necessary ordered, essentially allowing some of the very highest computed values
to “skip” eigenvalues.) Thus, whilst plotting a band structure, the very highest
data points do not necessarily represent points on the same eigenmode, because
the modes can overlap. It is therefore recommended to compute at least a few
eigenvalues more than the desired minimum number of modes. Due to the manner
of the eigenvalue solver SLEPc solving the eigenvalues, increasing the value of n
increases computation times in steps.

The path and resolution of the k-space sampling points are controlled with k,
which always has two values. The first value is the IBZ path, specified by the three
corner points of the IBZ triangle, Γ, X and M , represented by standard ASCII
characters G, X and M, respectively. Either a single corner point or a point-to-point
route between the three points can be used. For instance, the input GXMG corresponds
to the full path (Γ → X → M → Γ) on the IBZ triangle. The second value of k
is the sampling resolution. It determines the number of points calculated, which
are distributed evenly along the path. Because the full IBZ path is a right-angled
isosceles triangle, the distribution of the points on the triangle sides Γ–X, X–M
(the “catheti”) and M–Γ (the “hypotenuse”) is in the ratio 1 : 1 :

√
2.

The computed points can also be “manually” set with the parameter K (upper-
case), by specifying a file containing the desired k-space coordinate points. This can
be any number of points anywhere in k-space, thus it may also include points inside
the IBZ triangle. Therefore the K parameter has slightly more freedom than k.

The list of materials m should have the same number of values as h (the thick-
nesses of the materials). The names of the materials called must also be found
in the material file materialParameters.txt, along with the material parameters
lambda, mu and rho (respectively corresponding to λ, µ and ρ from Equation 4).
For instance, silicon nitride Si3N4 can be called with m=Si3N4, should it be defined
in the material file followingly:
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Si3N4:
lambda=86.57 GPa
mu=101.63 GPa
rho=3100 kg/m3

10.3 Other Parameters

The verbosity level of the console output is controlled by p, with values ranging from
0 (nothing) to 3 (everything). S (uppercase) toggles snapping or “round-shifting”;
with S=0 the hexahedral elements are not distorted and remain right-angled. Snap-
ping is recommended to be toggled off for full membranes, but in meshes containing
holes it will lead to “blocky” edges, as shown in Figure 8b, thus it may cause slightly
smaller-than-intended radius. (Examples of round-shifting can also be seen in Fig-
ure 10.)

The symmetry of the (interior) mesh nodes can be broken with maximum lattice
point random variation R (uppercase), whose values are in picometers. R=0 leaves
the mesh unrandomized, any other value will cause the interior nodes to be randomly
shifted that amount or less, in x- and y-direction. The overall shape of the mesh
remains unchanged, as the border nodes are not disturbed (including the borders of
the hole).

The visualization of the mesh is toggled with v, which requires an active GLVis
server to be running. Boundary elements can be toggled with b and periodic borders
with P (uppercase). However, these should only used for debugging purposes.

Parameters a, r, F and the components of h are of data type double and accept
integer or decimal values. (Internally, these values are scaled to obtain best simula-
tion precision for lattice constants with the order of magnitude near 10−7 m, as seen
in the console output described in Figure 7.) Parameters p, n, R, all components
of e and the second component of k are of type int and accept only integer values.
Parameters S, b, v and P behave like booleans and expect a value of 0 or 1 (cor-
responding to false or true, respectively). The string type parameters d (default
settings file), all components of m and the first component of k should not contain
spaces or commas in the string value (including filenames), as spaces are used to
separate parameters and commas to separate parameter value components.

The command -help will show the description of exit codes, full list of parame-
ters and the current default settings along with their comments.
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10.4 Error States

Exit codes are implemented to enhance feedback for user in case of a fatal error.
(The exit code is 0 when the program is run successfully.) The run is halted and a
non-zero exit code is returned if some parameters would produce error states and
prevent the program from running. As an example, trying to create a lattice with
a hole too large to fit on the lattice would otherwise cause a crash (but instead
returns exit code 8). In addition, a red warning message is displayed in the console
(Figure 6). Below is a comprehensible list of non-zero exit codes:

4: Material not found
5: Material property not found
6: Mismatch in number of materials and number of heights
7: Too many undefined parameters
8: Too big hole for the lattice
9: Mismatch in number of vectors in the file and number

given on the first line of the file
10: Too few numbers of component elements
11: Error in k-space sample file
12: Error in k-space path or sampling resolution
13: One of the parameters has been defined more than once

These exit codes were selected avoiding reserved exit codes. (E.g. exit code 1
is often used as a “general catchall” and exit code 2 for misuse of shell builtins).
[Cooper-2014]

11 Mesh

11.1 Mesh Generation

The mesh dimensions are based on the parameters for the lattice constant a and
thickness h of the unit cell. The mesh consists of hexahedron-shaped elements, for
which a parameter for either the per-dimension counts e or the preferred size s has
to be provided. Based on the parameters, a rectangular cuboid mesh is generated
from a number of small hexahedral elements, using the MeshFactory class.
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Figure 6. The red warning message and the produced non-zero exit code on
a 3-core run caused by setting the hole radius (r=650) too large for the lattice
constant (a=200) in the command prompt (the white text on the first line).

First, a three-dimensional grid of vertices serving as the nodal points between the
elements is created. (Because the vertices act as the corner points for the elements,
the number of vertices per dimension is one greater than the number of elements
per dimension.) The hexahedral elements with their corner points at the vertices
are then created for all adjacent groups of 8 vertices, unless all 8 vertices of the
hexahedron are bound within a cylinder with a radius of r from the center of the
mesh. Thus, if r is greater than zero (and r >

√
2s), a hole is left in the middle of

the mesh, going from the top of the mesh all the way to the bottom.
Next, the innermost vertices are moved in x- and y-direction to be along the cir-

cumference of the hole (the “round-shifting”) and the remaining vertices are shifted
outwards to enforce a more uniform size of a single element across the entire mesh.
It should be noted however, that since the innermost hexahedrons are no longer
cubical, the volume of an element near the edge can be more than twice as much as
that of an inner element.

As an example, for a mesh with a lattice constant a=200, thickness h=50, radius
of the hole r=65 and per-dimension element counts e=8,8,2, the number of initial
vertices generated is (8+1)×(8+1)×(2+1) = 243. In each layer of elements, there
are 10 elements with each of their eight vertices within the range of the hole radius.
Thus, (across the two layers) the total number of hexahedral elements created is
(8 × 8 − 10) × 2 = 108. At this stage, all of the elements are still rectangular,
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Figure 7. A screenshot of a command prompt (first two lines) followed by the
produced Kalvo terminal output with the blueprint of the 8×8×2 base mesh
with a=200, h=50 and r=65 printed in the bottom left-hand side of the console,
corresponding to the mesh stage in Figure 8b. (Note that the displayed double
type values set for a, h and r are scaled for the simulation and thus are not in
nanometers internally.)

and a “blueprint” of a this mesh is printed in the console using standard Unicode
box-drawing characters (Figure 7).

Figure 8 visually demonstrates the evolution of this mesh base to the rough,
angular hole and the eventual “round-shifting” of the hole borders. (It should be
noted that code-wise, the hexahedral elements for the first visualized mesh with full
8×8×2 elements are not actually created, but only the vertices.) After the creation
of the elements, the unused vertices are removed.

Quadrilateral boundaries are created on each of the exterior edges of the border
hexahedrons. The border boundaries are attributed clockwise from 1 to 4. The
top, bottom and the “inside” boundary of the cylindrical hole (if one exists) are all
attributed 5. Any intermaterial boundaries within the mesh are attributed sequen-
tially starting with 6. In order to make the mesh periodic, all boundaries of the
first two horizontal edges are “fused” to the opposing side of the unit cell, i.e. 1 is
connected to 3 and 2 to 4.
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Figure 8. A visual representation of (a) an 8×8×2 mesh base, (b) the mesh
without the twenty innermost elements and (c) the final mesh with the vertices
shifted to circular shape and the surrounding elements adjusted accordingly
(right). The mesh represents a unit cell with a lattice constant of 200 nm, thick-
ness of 50 nm and a circular hole with a radius of 65 nm.

11.2 Precision

Tetrahedrons (convex 3D polytopes with four triangle faces, “triangular pyramids”)
are often used for elements in three-dimensional meshes. In this software, hexahe-
drons were chosen to be used as the mesh elements because they can intuitively be
used for a rectangular cuboid shaped unit cell without major drawbacks. If neces-
sary, the symmetry can be broken through small adjustments to the vertices (with
mesh randomness parameter R).

Matching test cases were created with COMSOL Multiphysics® to compare com-
puted eigenvalues to those computed with Kalvo. The circular hole is approximated
well, with precision increasing with more elements, as demonstrated Figure 9. In the
mesh, the hole is a prism-like, near-regular polygon with rotational and reflection
symmetry of order 4, as shown by in Figure 10.

The downside of using hexahedral elements is that their faces are quadrilaterals.
Unlike triangles, quadrilaterals can be non-convex polygons, the presence of which
was noted to cause significant computational errors during physics simulation of the
mesh. To avoid this, an algorithm was created to remove all concavity from the
mesh. The algorithm is run before passing the mesh to the eigenvalue solver by
shifting the problem vertices outwards from the center of the quadrilateral. Thus,
all elements including the innermost hexahedrons in a hole-containing mesh have all
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Figure 9. The percentage difference of the first 15 eigenvalues (different
coloured curves) as a function of N , for an N×N×3 base mesh of Al2O3 with
a=200, h=50 and r=60 at k = (π/2, 0) in comparison to equivalent COMSOL
Multiphysics® results with a 40×40×10 base mesh. With N > 14 the difference
is below 1 %.

Figure 10. Top-view of meshes with near-maximum radius hole (in order of
increasing number of elements), visualized with the initially excluded hexahe-
drons without round-shifting (upper row) and the corresponding meshes after
round-shifting (bottom row).
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of their interior angles less or equal to 180 degrees. As a result, the two-dimensional
shape of the polygonal base of the hole is not necessarily strictly convex, but the
scale of the concavity is negligible and does not influence computational accuracy.

12 Eigenvalue Solving

12.1 CLEEPS

The mesh is passed to the classical linear elastic eigenvalue problem solver (CLEEPS),
which creates a parallel mesh of the serial mesh created with MeshFactory. Piece-
wise constant coefficients of material parameters λ, µ and ρ are created to account
for the different materials in the mesh.

In CLEEPS, complex linear forms a and m are created with domain integra-
tors for the non-derivative part (BlochVectorMassIntegrator), first derivatives
(BlochGradientIntegrator) and second derivatives (ElasticityIntegrator) of
the Equation 4. The ElasticityIntegrator ((λδikδjl +µ(δijδkl +δilδjk)∇uj,∇vi) is
an integrator found within the MFEM bilinear forms, but the other two were created
specifically for this problem. [Lappalainen-Puurtinen-2021, Anderson-2021]

The BlochVectorMassIntegrator (Mu⃗,v⃗) contains the non-derivative coeffi-
cients of the weak form of the Navier–Cauchy equation in a matrix form,

DenseMatrix vmidm(3);
{

vmidm(0,0) = (lam+2*mu)*kx*kx + mu*ky*ky;
vmidm(0,1) = (lam+mu)*kx*ky;
vmidm(0,2) = 0;

vmidm(1,0) = (lam+mu)*kx*ky;
vmidm(1,1) = (lam+2*mu)*ky*ky + mu*kx*kx;
vmidm(1,2) = 0;

vmidm(2,0) = 0;
vmidm(2,1) = 0;
vmidm(2,2) = mu*(kx*kx+ky*ky);

}
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where variables lam, mu, kx and ky correspond to λ, µ, kx and ky, respectively.
The first dimension of vmidm corresponds to the trial function dimension Ui and the
second to the test function dimension Vi, where i = 1,2,3 (respectively corresponding
to 0,1,2 in code, due to indexing in C++). Thus, the first rows of each block of
the matrix correspond to the coefficients in Equation 11.

Similarly, the coefficients in Equation 12 correspond to first blocks of the coeffi-
cient arrays in BlochGradientIntegrator (M∇u, v⃗),

MQpos[0][0][0] = (lam+2*mu)*kx;
MQpos[0][0][1] = mu*ky;
MQpos[0][0][2] = 0;
MQpos[0][1][0] = lam*ky;
MQpos[0][1][1] = mu*kx;
MQpos[0][1][2] = 0;
MQpos[0][2][0] = 0;
MQpos[0][2][1] = 0;
MQpos[0][2][2] = mu*kx;

MQneg[0][0][0] = -(lam+2*mu)*kx;
MQneg[0][0][1] = -mu*ky;
MQneg[0][0][2] = 0;
MQneg[0][1][0] = -mu*ky;
MQneg[0][1][1] = -lam*kx;
MQneg[0][1][2] = 0;
MQneg[0][2][0] = 0;
MQneg[0][2][1] = 0;
MQneg[0][2][2] = -lam*kx;

where MQpos and MQneg are three-dimensional arrays. In both arrays, the first
dimension of the array corresponds to the test function dimension Vi and the second
to the trial function dimension Ui. The third dimension of the array corresponds
to the test function derivative direction ∂Vi/∂j in MQPos and to the trial function
derivative direction ∂Ui/∂j in MQNeg, where j = x,y,z (corresponding to 0,1,2 in
code). For instance, MQpos[0][1][2] corresponds to the coefficient of the term
∂V1
∂z
U2, which is 0.
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The integrators create an mfem::DenseMatrix type element matrix consisting of
submatrices calculated with the aforementioned coefficients in their
AssembleElementMatrix subroutine. After initializing the integrators, matrices A
and M are then created that define the generalized eigenvalue problem

Ax = ΛMx, (15)

where Λ corresponds to ω2 in Equation 14. This is done by forming
ParSesquilinearForm type pointers, combining the element matrices of all integra-
tors with their Assemble subroutine and eventually using them to create
PetscParMatrix type system matrices that are passed to the SLEPc solver. (Due
to restrictions in implementing complex numbers with MFEM at the time of writ-
ing the code, the system matrix consists of real numbers representing the real and
imaginary parts.) [Falgout-Yang-2002, Balay-2021]

From Equation 15, the Λ is solved for a number of eigenvalues and the ω is
obtained by taking the square root of Λ, thus the frequency is f = ω/2π. (A scaling
coefficient is also used for unit conversion.) This is repeated for all desired k-space
values. (As a side effect of segregating the real and imaginary parts in the PETSc
system matrix, all eigenvalues are technically doubled redundantly, but only the
eigenvalues with an odd index are saved, effectively ignoring every other value.)

12.2 Output

The program outputs a text file with all the eigenvalues. The name of the file consists
of four items: the list of materials separated by comma, the lattice constant, the
heights of the materials separated by comma and the radius of the hole. The four
items are separated by underscore and the last three items preceded by their one-
character parameter symbols, a, h and r, respectively.

The first line of the file is the number of eigenfrequencies per point in k-space.
All remaining lines consist of the coordinate points in k-space (x and y separated by
comma), each immediately followed by the eigenfrequencies (in Hz) solved for the
point, each on their own line. For instance, for the Si3N4 mesh in Figure 8 with n=5
and k=GXMG,50, the generated file Si3N4_a200_h50_r65.txt begins followingly:
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5
0,0
-nan
-nan
-nan
1.29829e+10
1.32996e+10
1.0472,0
5.9531e+08
1.95354e+07
1.26717e+09
1.25302e+10
1.29985e+10
2.0944,0
7.80578e+07

...

Here, the first line (5) is the number of eigenvalues, the second line (0,0) is the first
point in k-space (with x = 0 and y = 0), the next five lines are the solved frequencies
at that point, the 8th line (1.0472,0) is the second point in k-space, and so on.

Due to the computational method used, the eigenfrequencies are in no particular
order. Very small frequencies (below 500 Hz) sometimes show as nan or -nan (“not
a number”), because near-zero values can be negative within the computational
accuracy and solving ω from Equation 15 requires taking a square root. (Square
roots of negative numbers are not defined a number value in the double date type.)
This usually only affects the first three values at Γ. (The nan/-nan values are
marked as 0 in the example Python plotter file in Appendix 2.)

It should be noted that (unless renamed) the eigenvalue text file will be overwrit-
ten if a mesh with identical geometry and material parameters is created, because it
will have the same filename (even if there is a change in another parameter, such as
e). In addition, the latest created mesh is always saved in pnc.mesh file (encoded
with the general MFEM mesh format MFEM mesh v1.x). This mesh file, unless re-
named, is overwritten on every run. This is intended behaviour to reduce redundant
disc space usage. [Kolev-Dobrev-2010]
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Figure 11. The total execution time as a function of N , for solving the
eigenvalue problem for the N×N×3 base mesh used in Figure 9 with Jyväskylä
FGCI (Finnish Grid and Cloud Infrastructure) Clusters puck.

12.3 Efficiency

For a mesh with mesh base ofN×N×M elements, whereN is the number of elements
in (horizonal) x- and y-dimension and M in (vertical) z-dimension, the runtime
of the program increases about quadratically as a function of N , as witnessed in
Figure 11. M increases the runtime about linearly. When looking for band gaps, a
good balance between efficiency and precision can be achieved, for instance, with N
of 15. For two-material meshes, M of 5 is usually the smallest sufficient number of
vertical elements, if one of the materials is significantly thinner than the other.

The time spent on creating the mesh is negligible and most of the computation
time is spent on solving the eigenvalue problem in each k-space point. A fraction
of this time is spent on forming the matrix, whilst obtaining the eigenvalues with
SLEPc takes the longest.

The number of eigenvalues solved increases the computation time of the program
near-linearly up to 250 eigenvalues, after which the computation time increases in
steps of 40 to 70 eigenvalues (excluding the first step size), as shown in Figure 12.
This is typical behaviour for the SLEPc eigenvalue solver. (Interestingly, solving
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Figure 12. The total execution times for solving different numbers of eigen-
values for a 15×15×3 base mesh with Jyväskylä FGCI Clusters puck. The time
increase is initially about linear as a function of the number of eigenvalues, but
after 250 eigenvalues the time increases in steps.

250–263 eigenvalues is faster than solving 249 eigenvalues.) [Roman-2021]
The speedup gained from using a large number of parallel processes can depend

on many things, such as other simultaneous processes and the hardware used. On the
Jyväskylä FGCI (Finnish Grid and Cloud Infrastructure) Clusters puck, the speedup
behaves near-linearly up to 4 parallel processes, as demonstrated by Figure 13. After
20 parallel processes, the speedup decreases significantly. Therefore, it is more
efficient to, for instance, run two simultaneous jobs with 8 parallel processes each,
rather than run the two jobs back-to-back with 16 parallel processes.

Simulating a 15 × 15 × 5 base mesh for 50 eigenvalues with a sampling rate of
60, takes about 50 minutes with Jyväskylä FGCI Clusters puck using eight parallel
processes, in 2021.
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Figure 13. The observed speedup for solving the eigenvalue problem for a
15×15×3 base mesh for different number of parallel processes for 10 different
runs (coloured curves) as a function of the number of parallel processes, with the
blue dashed line showing the optimal speedup. For all these runs, linear scaling
(or apparent super-linear scaling) can be observed until 4 parallel processes,
after which the rate of speedup decreases significantly. The measurements were
performed on the Jyväskylä FGCI Clusters puck.
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Research and Results
All results presented from hereon use a mesh base of 15×15×5 elements or more.

Thus, concluding from the comparison in Figure 9, all values computed from the
simulations have a computational uncertainty of ±1 % or less. The simulations were
performed on the Jyväskylä FGCI Clusters puck. The values of the material param-
eters used in the simulations are listed in Appendix 3, in the format they appear in
the materialParameters.txt file (with Lamé parameters calculated according to
Equation 5). [Lide-2005, Nunes-1990]

Referring to the eigenmodes is made difficult by the nature of the band structure;
the modes intersect and change order as they are shifted by changing parameters.
In the following sections, referring to the “nth mode” means the eigenmode with
the nth lowest frequency at the indicated point in k-space.

13 Band Gaps in Pure Silicon Nitride Phononic
Crystals

13.1 Prior Work

In 2014, Zen et al. engineered thermal conductance with FEM simulations of pho-
nonic crystals. FEM band structure calculations showed that for a Si3N4 phononic
crystal with a large cylindrical hole (filling factor of 0.7), there is a large band gap
with relation to the thickness, when thickness to lattice constant ratio is h/a = 0.5.
[Zen-2014]

Moreover, their simulations also showed a band gap of similar magnitude at a
lower frequency, when h/a = 0.4. This has the potential of having a larger band gap
width-to-midpoint ratio (w/M), from hereon referred to as the “relative band gap”,
which is more relevant than the absolute width of the band gap, since the band
structure can be scaled by inversely scaling the all dimensions of the unit cell. By
simulating this structure with Kalvo, for a lattice with lattice constant a of 1000 nm,
matching results were discovered (Figure 14); there is a band gap of 0.627 GHz with
midpoint at 3.11 GHz, which equates to w/M ≈ 0.202.

Broadly speaking, bigger relative band gaps are more interesting. The width of
the band gap in Figure 14 is limited by the 6th eigenmode at X from below and
by the 7th mode at Γ from above. If these modes can be shifted down and up,
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Figure 14. The band structure for Si3N4 phononic crystal with lattice constant
a of 1000 nm, thickness h of 400 nm and filling factor F of 0.7 (equating radius
r of 472 nm and h/a = 0.4). The band gap is highlighted in red.
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respectively, the band gap will increase in width. (Performing this is discussed after
the next section.)

13.2 Modes Visualized

The software has also rudimentary support for visualizing the eigenmodes in a point
in k-space by sending the computed eigenvalues and displacements in the grid func-
tion by socket to a GLVis server. [Kolev-2010].

Figure 14 uses a sampling resolution of 60 points, 19 of which are used for the
Γ–X section of the full IBZ path. (18, excluding the initial point at Γ, the “zeroth”
point.) For the first 25 modes, there are no intersecting modes at one third of the
way from Γ to X, with all modes being relatively well spread from each other, thus
they can easily be told apart. On the Γ–X path, ky = 0 for all values and kx = π/a

atX. Hence, a point for visualization was selected at kx = π/3a = 6π/18a.With the
18 points this corresponds to the 6th set of eigenfrequency data points in Figure 14,
at (π/3a,0). This is highlighted in Figure 15.

When it comes to the shape of the modes, the exponent term of the trial function
causes a phase shift in different points. Figure 16 visualizes the real solutions of
lowest six modes at (π/3a,0). In a full membrane, the lowest three modes, the
flexural, shear and longitudinal modes, oscillate in z-, y- and x-axis, respectively.
For the Si3N4 phononic crystal with lattice constant of 1000 nm, thickness of 400 nm
and filling factor of 0.7, the lowest three modes mainly oscillate correspondingly,
with the waves propagating towards positive x. The fourth mode twists torsionally
about the z-axis with rotational symmetry of order 4. The modes 5 and 6 with
transverse wave motion are very similar to one another, apart from oscillating in x-
and y-axis, respectively. [Muhammad-Lim-2020]

Figure 17 visualizes modes “7–12”, the lowest six modes immediately above the
band gap. Mode 7 oscillates along the x-axis, very similar to mode 8, oscillating
along the y-axis. However, in mode 8 the oscillation is in the same phase along the
oscillation axis, but in mode 7 it is not. (This similarity/difference is difficult to see
in the GLVis still image visualizations, which are in different phases with each other
due to technical limitations.) Modes 10 and 11 exhibit similar pair-wise oscillation
to modes 7 and 8, with mode 10 oscillating in phase along the y-axis and mode
11 oscillating out of phase along x-axis. Mode 9 oscillates in all axes, with waves
propagating towards positive x. Mode 12 has a circular oscillation about the y-axis.
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Figure 15. The Γ–X section of the band structure for Si3N4 phononic crystal
with lattice constant of 1000 nm, thickness of 400 nm and filling factor of 0.7. A
vertical yellow bar indicates the set of data points at (π/3a,0) = (6π/18a,0) ≈
(1.0472/a,0).
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Figure 16. (From left to right in order of ascending frequency) the first six
eigenmodes for Si3N4 phononic crystal with lattice constant of 1000 nm, thick-
ness of 400 nm and filling factor of 0.7 at k-space point (π/3a,0). The black-edged
box represents the initial state of the unit cell.

Figure 17. (From left to right) the eigenmodes 7–12 for Si3N4 phononic crystal
with lattice constant of 1000 nm, thickness of 400 nm and filling factor of 0.7 at
k-space point (π/3a,0).

14 Band Gaps in Multilayered Si3N4 Based Pho-
nonic Crystals

14.1 Si3N4–Al2O3 Dual Layer Membranes

Since the eigenmodes behave differently for different structures and different mate-
rials, the band structure of the silicon nitride phononic crystal in Figure 14 can be
changed by adding a layer of another material on top of it. (Whether the second
material is on top or on bottom of the first one, is irrelevant; the band structure in
the horizontal IBZ is independent of the vertical orientation.)

Simulations showed that adding a layer of polystyrene (PS), a soft material, did
not significantly increase the relative band gap. On the other hand, adding a layer
of lead (Pb), a hard material, immediately shifted down all higher modes, effectively
reducing the relative band gap, too. However, a layer of aluminum oxide (Al2O3)
yielded some promising results.

Since the software can be executed with command prompts, it is easy to go
through different structures by writing a Bash script with a loop. The lattice in
Figure 14 was stacked with a layer of Al2O3, creating a Si3N4–Al2O3 dual layer
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Figure 18. The band structures of Si3N4–Al2O3 phononic crystals with lattice
constant of 1000 nm and filling factor of 0.7 with a 400 nm thick layer of Si3N4,
for varying thicknesses of an Al2O3 layer. The black arrows show the direction
the mode minimum/maximum shifts when the Al2O3 layer thickness increases.
[Animation available.]

membrane. Keeping the thickness of the Si3N4 layer constant (400 nm), varying
thicknesses of Al2O3 were looped over. Figure 18 shows select band structures for a
silicon nitride aluminum oxide dual layer membrane.

As the thickness of the layer of Al2O3 increases, the mode immediately above the
band gap (starting at f(Γ) ≈ 3.5 GHz) for hAl2O3 = 0 nm, is shifted up, causing the
bad gap to rapidly widen until the gap is met with the next mode above it (when
hAl2O3 ≈ 10 nm). This next mode also shifts up, but more slowly, especially at IBZ
point M , where the band gap is now limited at instead of at Γ.

The sixth mode at X (starting at f(Γ) ≈ 2.7 GHz immediately below the band
gap) also initially shifts upwards, but starts shifting down after the thickness of
Al2O3 grows above 35 nm. Hence, the band gap is limited less from below at IBZ
k-space point X, causing the lower bound of the band gap to start decreasing rapidly
and consequently starting the widening of the band gap.

The 10th mode at Γ (the fourth one up from the band gap when hAl2O3 = 0 nm,
starting at f(Γ) ≈ 4.5 GHz) shifts down as the thickness of Al2O3 increases. It
“reaches” the band gap at IBZ pointM when hAl2O3 ≥ 72 nm, stopping the widening
of the band gap after that point. This is because the upper bound of the band gap

https://tim.jyu.fi/view/users/paritala/gradu/thesis#Figure-R5
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goes down in frequency faster than the lower bound. This behaviour can clearly be
seen in Figure 19, which visualizes the upper and lower boundaries of the band gaps
as a function of Al2O3 thickness.

Thus, for Si3N4–Al2O3 dual layer membrane with hSi3N4 = 400 nm, the largest
relative band gap, w/M = 0.231, is achieved with hAl2O3 = 72 nm. This can be
observed in the maximum of the bright blue undashed curve on the left-hand side
of Figure 20

Adding the layer of Al2O3 on top of the 400 nm Si3N4 membrane naturally in-
creases the total thickness of the membrane, thus somewhat limiting the membrane’s
potential for large band gaps. Hence, adding the layer of Al2O3 was simulated on
varying thicknesses of Si3N4 (with a hSi3N4 sampling resolution of 5 nm), presented
in Figure 20 (visualized with a selectively lower sampling resolution, for the sake
of clarity). For this dual layer membrane with a filling factor of 0.7, the highest
relative band gap, w/M = 0.234, is achieved with hSi3N4 of 340 nm (plotted by the
black undashed curve) when hAl2O3 = 130 nm, making the total thickness of the
membrane 470 nm.

Figure 20 also shows another local maximum of w/M = 0.225 for around hSi3N4

of 50 nm (solid red curve) when hAl2O3=455 nm, making the total thickness of the
membrane 505 nm. This shows that, for this phononic crystal structure, Si3N4–
Al2O3 dual layer membrane produces larger relative band gaps than pure Si3N4 or
Al2O3 membranes. For pure Al2O3 (the rightmost, violet curve), the largest relative
band gap of 0.224 is produced with hAl2O3=490 nm.

14.2 Triple Layer Membranes

In terms of the simulations, there is no difference in the order of the materials in
a dual layer membrane (i.e. Si3N4–Al2O3 = Al2O3–Si3N4). Triple layer membranes
were tested by vertically surrounding the Si3N4 with another material from both top
and bottom, and vice versa, to find out the effect of dividing one material into two
(under and over the other material in the middle).

Figure 21 shows the band structures for three membranes:

1. a Si3N4–Al2O3 dual layer membrane with respective layer thicknesses of
400 and 40 nm,
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Figure 19. The band gaps (pink area) of the Si3N4–Al2O3 phononic crys-
tals with lattice constant of 1000 nm and filling factor of 0.7, with a 400 nm
thick layer of Si3N4, for varying thicknesses of an Al2O3 layer. (The blue data
points represent the upper and lower bounds of the band gap.) The sizes of the
corresponding relative band gaps are plotted by the solid bright blue curve in
Figure 20.
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Figure 20. The relative band gaps of 17 different constant thicknesses of Si3N4
(individual curves) as a function of the thickness of Al2O3, for a Si3N4–Al2O3
dual layer membrane with lattice constant of 1000 nm and filling factor of 0.7.
The highest relative band gap is achieved with hSi3N4=340 nm (the solid black
curve) when hAl2O3=130 nm.
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Figure 21. Band structure comparison between Si3N4–Al2O3 dual layer mem-
brane with respective layer thicknesses of 400 and 40 nm (left), Al2O3–Si3N4–
Al2O3 triple layer membrane with respective layer thicknesses of 20, 400 and
20 nm (middle) and Si3N4–Al2O3-Si3N4 triple layer membrane with respective
layer thicknesses of 200, 40 and 200 nm (right). All three membranes have a
total thickness of 440 nm with Al2O3 to Si3N4 ratio of 1 : 10, lattice constant of
1000 nm and filling factor of 0.7.
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2. an Al2O3–Si3N4–Al2O3 triple layer membrane with respective layer thicknesses
of 20, 400 and 20 nm, and

3. a Si3N4–Al2O3-Si3N4 triple layer membrane with respective layer thicknesses
of 200, 40 and 200 nm.

(Hence, each membrane has a total thickness of 440 nm and Al2O3 to Si3N4 ratio of
1 : 10.) For the first two (Si3N4–Al2O3 and Al2O3–Si3N4–Al2O3), the frequencies of
individual data points in the band structures are identical within 1 %. (However, this
does not mean that the modes are unchanged.) With Al2O3 in the middle, between
two layers of Si3N4 (Si3N4–Al2O3-Si3N4), the differences are more pronounced.

Polystyrene also exhibited slightly similar behaviour as Al2O3, with Si3N4–PS–
Si3N4 band structures being very different to Si3N4–PS and PS–Si3N4–PS band
structures, even losing the band gap of the membrane with hPS to hSi3N4 ratio of
1 : 10 (Figure 22). This difference can be explained with Si3N4 being significantly
denser and stiffer than polystyrene, whereas Si3N4 and Al2O3, in comparison, have
very similar material parameters altogether.

The difference between the Si3N4–PS dual and triple layer membranes grows
larger when the hPS to hSi3N4 ratio increases. The band gap still exists for Si3N4–
PS–Si3N4 membrane with hPS to hSi3N4 ratio of 1 : 20. For both Al2O3 and PS, three
of the lowest six modes (namely 2nd, 3rd and 5th modes) remain almost unchanged
between the dual and triple layer membranes, whilst the higher modes are reduced
for the configuration with the stiffer material on top and bottom.

As a somewhat analogous macroscopic example, a leather wallet with payment
cards inside can be considered a soft–hard–soft triple layer membrane. If instead
the bare leather is sandwiched between the hard cards, the new hard–soft–hard
structure stretches similarly as before, but does not bend as easily. In Figure 22,
the two “linear” modes near Γ, the shear and longitudinal modes, remain nearly
unchanged, whilst the 1st mode, the flexural mode, sees a large change in the third
band structure.
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Figure 22. Band structure comparison between Si3N4–PS dual layer membrane
with respective layer thicknesses of 400 and 40 nm (left), PS–Si3N4–PS triple
layer membrane with respective layer thicknesses of 20, 400 and 20 nm (middle)
and Si3N4–PS-Si3N4 triple layer membrane with respective layer thicknesses of
200, 40 and 200 nm (right). All three membranes have a total thickness of 440 nm
with PS to Si3N4 ratio of 1 : 10, lattice constant of 1000 nm and filling factor of
0.7.



61

Figure 23. The band structures of Si3N4–Al2O3 phononic crystals with lattice
constant of 1000 nm and thickness of the Si3N4 layer of 340 nm and Al2O3 layer
of 130 nm, for varying radii of the cylindrical hole. A band gap exists when
r > 425 nm. The black arrows show the direction the mode minimum/maximum
shifts to when r increases. [Animation available.]

15 Effect of Filling Factor

Increasing the filling factor by increasing the radius of the cylindrical hole widens
the band gap. The theoretical maximum for the radius is half of the lattice constant,
equating to a filling factor of π/4 ≈ 0.785. (This would mean zero-diameter walls
between the holes!) However, according to experiences in the Nanoscience Center at
the University of Jyväskylä, walls with a diameter smaller than 50 nm are difficult
to create in practice and tend to be too fragile. [Loippo-2019]

All of the lower modes in the band structure are shifted down when the radius
increases, constricting the band gap less and thus increasing its width. Figure 23
shows how the lower modes shift down at a higher rate than modes immediately
above the band gap when the radius of the hole is increased. For Si3N4–Al2O3

dual layer membrane with respective layer thicknesses of 340 and 130 nm and lattice
constant of 1000 nm, the highest low mode’s maximum at X is at a higher frequency
than the minimum of the lowest of the upper modes at Γ, when the radius is below
425 nm (corresponding to filling factor of 0.58), and the band gap does not exist on
radii approximately smaller than or equal to that.

https://tim.jyu.fi/view/users/paritala/gradu/thesis#Figure-R10
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This behaviour is also clearly visible in Figure 24 which visualizes the upper and
lower boundaries of the band gaps as a function of radius r. The width of the band
gap increases rapidly with increasing radius, up until for values with r ⪆ 465 nm,
which have the upper boundary of the band gap constricted by a mode minimum
at M . For a lattice constant of 1000 nm, this radius corresponds to a filling factor
of 0.68.

Appendix 1 is an example of a Bash script used to conduct such a systematic
study of varying the radius of the hole (from 400 nm to 485 nm with a sampling
resolution of 5 nm) in a dual layer phononic crystal membrane with a for loop.
In 2021, executing the script with eight parallel processes on the Jyväskylä FGCI
Clusters puck takes about eight hours.
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Figure 24. The band gaps (pink area) of the Si3N4–Al2O3 dual layer phononic
crystal membranes with lattice constant of 1000 nm, thickness of the Si3N4 layer
of 340 nm and thickness of the Al2O3 layer of 130 nm as a function of the radius of
the cylindrical hole. The blue data points represent the upper and lower bounds
of the band gap. The upper bound of the band gap reaches its maximum at
r ≈ 465 nm (F ≈ 0.68). The band gap does not exist when r ⪅ 425 (F ⪅ 0.58).
However, the exact point is not rendered in the graph, because the used sampling
resolution of the radius is 5 nm at that point.
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Conclusions

In this work, a software was developed for simulating the dispersions of multi-
layered phononic crystals with cylindrical hole lattice, utilizing MFEM and SLEPc
libraries. The software was tested for a systematic study of structures with single-
and multimaterial membranes, by starting with a known single-layer phononic crys-
tal membrane and systematically optimizing the structure to find new multilayered
membranes with larger band gaps, using materials commonly used in the labora-
tory. The properties of these newfound multilayer membranes have not been exper-
imentally verified. The computation was performed on structures with the order
of magnitude in nanometers, but the structures can be scaled to smaller or larger
scales.

As a starting point, matching results about Si3N4 phononic crystal were found
with the study by Zen et al. in 2014; a 400 nm thick Si3N4 membrane with a 1000 nm
lattice constant and a filling factor of 0.7 has a relative band gap of w/M ≈ 0.202.
Through systematic study, it was discovered that this relative band gap can be
enlargened to ≈ 0.231 by adding a 72 nm layer of Al2O3 on top of it. The Si3N4–
Al2O3 dual layer membrane’s relative band gap is the largest, w/M ≈ 0.234, when
hSi3N4=340 nm and hAl2O3=130 nm, with the total thickness of the membrane at
470 nm.

It was also shown that increasing the filling factor increases the width of the
band gap, but there is a clear point where diminishing returns become very high.
For this configuration of materials (hSi3N4 = 340 nm and hAl2O3 = 130 nm), the band
gap appears when the filling factor is above 0.58, increasing rapidly until a filling
factor of 0.68. This suggests that in order to develop a desired band gap, after a
certain point it may be more effective to scale the entire unit cell as opposed to
increasing the filling factor that also comes with the cost of reducing the diameter
of the walls between the holes. Very thin walls are difficult to fabricate and can
reduce the structural integrity of the material.

The relative band gap of the Si3N4–Al2O3 dual layer membrane was larger than
for pure Al2O3, showing that a dual layer membrane can yield a larger relative
band gaps than its component materials alone. It was also found that the band
structure changes if one of the two materials is instead distributed into two layers
surrounding the other material, especially if the distributed material is the stiffer of
the two. Si3N4–PS and PS-Si3N4–PS membranes with hPS to hSi3N4 ratio of 1 : 10
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and F = 0.7 have a band gap whereas the corresponding Si3N4–PS–Si3N4 membrane
does not. The Si3N4 membrane’s band gap could not be increased with PS or Pb.

For all simulations performed, the local maxima and minima of individual modes
that restrict the band gap are always located at the corner points of the IBZ triangle
(at Γ, X or M). However, a few non-intervening local minima of the high frequency
modes can be observed outside the corner points, especially between M and Γ. It
can therefore be concluded that using a sampling resolution of 3 alone, thus plotting
only the corner points, is not a reliable method for finding band gaps, as it could
result in false positives. That said, no such band gap affecting modes came across
during this study, thus a sampling resolution of 3 (with intermediate point linear
interpolation) could certainly be used to quickly eliminate band structures without
band gaps, only to later filter out false positives with a higher sampling resolution.

Furthermore, the results of the software match those acquired with the com-
mercial mathematical modelling software COMSOL Multiphysics® to a high degree,
whilst allowing looping over parameters using Bash scripts, hence being extremely
faster for this type of task. As thousands of files were generated throughout this
work, during the data analysis, the naming convention used in the filenames pro-
duced by the software also proved to be very good for quickly finding and comparing
certain structures from the massive set of data that was computed, using the file
names as the search term. Additionally, the mode visualizations can be used in the
analysis.

The software has shown to be useful in studying the dispersive properties of pho-
nonic crystals, as it can be used to rapidly analyze multiple varying structures. By
changing one parameter and going through the multiple structures, such systematic
study can easily be conducted. Appendix 1 is an example Bash script for looping
over radii (as shown in Figure 23) with an example Python plotter in Appendix 2.

16 Future Work

The software is currently limited to computing full membranes and membranes
with a cylindrical hole of constant radius throughout the entirety of the rectangular
unit cell. In practice, the cylindrical holes rarely have a constant radius, thus an
upcoming feature is the support for holes in the shape of a conical frustum (a cylinder
with different top and bottom radii, r1 and r2). The implementation of this feature
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is mostly done and will work similarly to the lattice constant parameter a, with
two input values of r corresponding to r1 and r2, and one input value signifying a
constant radius r.

Another future feature is the exclusion of the hole from a number of the material
layers, resulting a multilayered material with a hole through only some of its layers.
This is instrumental for adding the support for pillar structures, which in addition
to hole phononic crystals, also provide interesting dispersion spectrums. In the
pillar structures, protruding bodies of material sit atop of full membrane of the
same or another material. Adding this feature simply requires implementation of
the aforementioned hole exclusion and “flipping” the geometry of the hole by not
creating elements with their vertices outside the given radius, as opposed to ones
inside the radius. Support for rectangular holes/pillars will also be added.

The rectangular unit cell used in the software can only simulate phononic crys-
tals in a rectangular grid arrangement. In order to simulate other grids, such as
hexagonal grids, the shape of the unit cell must also be of different shape. For a
hexagonal unit cell however, element shapes other than the hexahedron may have
to be considered.

At the time of coding the CLEEPS class, MFEM had no support for complex
numbers. Because of this, the large PETSc system matrix passed to the SLEPc
eigenvalue solver is created from real numbers representing the real and imaginary
parts of the complex number. As a result, all eigenvalues are redundantly computed
twice, which could be optimized to speed up computation with the newly added
complex number support in MFEM.

As the software can be run entirely by giving the desired parameters upon ex-
ecution, it is an excellent “backend” for a graphical user interface (GUI). With a
GUI front end, the user could observe the development of the band structure as it
gets refined with data points as the program is running and updating the diagram.
This allows the user to quickly test different parameters and halt the computation
if the band structure becomes uninteresting. A real-time visualization is technically
possible in the current version, as the output text file is appended throughout the
simulation as more points in k-space are computed. However, the computations
occur in the order the k-space points appear in the defined IBZ path, if a k-space
file is not specified. The band structure diagram refining in real time would be best
utilized with an order that starts with a low sampling resolution (such as the one
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shown in Figure 4) and then iteratively fills in the points between the computed
points.

Lastly, it would be possible to automate a task, such as finding band gaps, with
machine learning. Hybrid machine learning algorithms have recently been applied
for the prediction of the thermal conductivity of nanocomposites by Liu et al. in
2021. Kalvo’s easy executability with Bash scripts allows for the generation of a
huge amount of desired training data, which can be used for the machine learning
algorithm to build a model on the behaviour of the modes. [Liu-2021]
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*Appendices

Appendix 1: Bash Iterator for Radius
#!/bin/bash
# @author Panu Lappalainen
# @version 210829
# Example Bash script that loops over varying radii with Kalvo
# and plots the band structure with a Python plotter Plotter.py

A=1000 # lattice constant
E=15,,5 # mesh element counts (x,y,z)
M=Si3N4,Al2O3 # list of materials
H1=340 # thickness of 1st layer
H2=130 # thickness of 2nd layer
N=50 # number of eigenvalues
KPATH=GXMG # k-space path in IBZ
KCOUNT=60 # k-space sampling resolution

MIN_R=400 # minimun value of radius
MAX_R=485 # maximum value of radius
INC=5 # increment per step

for (( R=MIN_R; R<=MAX_R; R+=$INC )) # iteration
do
mpirun -n 8 Kalvo a=$A e=$E m=$M h=$H1,$H2 n=$N k=KPATH,$KCOUNT r=$R
python3 Plotter.py ${M}_a${A}_h${H1},${H2}_r$R

done
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Appendix 2: Python Plotter

# -*- coding: utf-8 -*-
"""
@author Panu Lappalainen
@version 210819
Plotter for Kalvo produced eigenvalue .txt files.
Adds found band gaps to band gap text file.
Expects eigenvalue file name as parameter.
"""

import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import math
import sys
import os

mingap = 1e8 # minimum separation considered as gap
y_lim = 8e9 # maximum y-axis value

folder = "/FOLDER/" # source directory
savefolder = "eigenvalues/" # target directory
name = str(sys.argv[1]) # filename from arguments

try:
os.mkdir(savefolder) # create target directory
print("directory " , savefolder , " created ")

except FileExistsError:
print("directory " , savefolder , " already exists")

print("reading " + folder + name)
A = np.loadtxt(folder + name + ".txt", comments=',', skiprows=0)
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nev = int (A[0]) # number of eigenvalues
kcount = int ((A.size-1)/(nev+1)) # number of k-space points
trashlines = 1 # number of garbage lines at the start of the file (nev)

print("converting nans to 0")
i = 0
while i < A.size:

if math.isnan(A[i]):
A[i] = 0

i += 1

fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1])

B = A[1:].copy()
i = 0
while i < B.size:

B[i] = 0
i += nev + 1

B.sort()

print("looking for band gaps (precision: " + str(mingap) + ")")
realgap = 0
i = kcount
while i < B.size:

gap = abs(B[i] - B[i-1])
rect = patches.Rectangle((0, B[i-1]), kcount, gap, linewidth=1,

edgecolor='r', facecolor='pink')
if (gap > mingap):

print("gap of " + str(gap) + " Hz at " + str(B[i-1])
+ " Hz, MP = " + str(B[i-1]+gap/2) + " Hz")

ax.add_patch(rect)
realgap = gap

i += 1
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print("plotting")
M = np.zeros([nev,kcount+1])
i = 0
while i < kcount:

linestart = (nev+1)*i+1+trashlines
lineend = (nev+1)*(i+1)+trashlines
B = A[linestart:lineend]
M[:,i] = B
i += 1

M = np.sort(M,0) # sort the eigenfrequencies
M[:,kcount] = M[:,0] # copy Gamma from first to last row

fig.set_size_inches(6, 10, forward=True)
ax.plot(M.transpose(), "b", lw=0.5,)
ax.set_ylabel('frequency (Hz)')
ax.set_title(name)
ax.set_xticklabels(['$\Gamma$','X','M','$\Gamma$'])
ax.set_xticks([0, (kcount-1)*0.293, (kcount-1)*0.586, kcount])
plt.xlim(0,kcount)
plt.ylim(0, y_lim)

filetype = ".svg"
print("saving plot as " + savefolder + name + filetype)
plt.savefig(savefolder + name + filetype, bbox_inches='tight')

bandgapfile = "bandgaps.txt"
print("saving newfound band gaps in " + bandgapfile)
file_object = open(savefolder + bandgapfile, 'a')
file_object.write('#' + name + '\n')
file_object.write(str(realgap) + '\n')
file_object.close()
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Appendix 3: Material Parameters
# Kalvo materialParameters.txt

Si3N4:
lambda=86.57 GPa
mu=101.63 GPa
rho=3100 kg/m3

Al2O3:
lambda=128.81 GPa
mu=163.93 GPa
rho=3965 kg/m3

PS:
lambda=4.285 GPa
mu=1.071 GPa
rho=640 kg/m3

Pb:
lambda=3.056 GPa
mu=0.4892 GPa
rho=11290 kg/m3
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