Maéaritelma 3.16. Vektoriavaruuden osajoukko A C E on konveksi, jos kaikilla x,y € A ja
t €[0,1] on (1—t)x+ty € A, eli jos kaikkien joukon A pisteparien vélinen jana kuuluu joukkoon
A.

Lause 3.17. Jos E on Hilbert -avaruus ja A C E konveksi ja suljettu, on olemassa tdsmdalleen
yksi xg € A joka minimoi normin A:ssa eli

l|lzol] < ||z]| kaikilla © € A.

Todistus. Olkoon 6 = inf{||z|| : z € A}. Jos z,y € A siten, ettéd ||z|| = ||y|| = ¢, on suunnika-
syhtélon nojalla

2
r+y
o=yl =2l + 2P = o+ ol = 10% — 4| T2 | < a2 - 2 =,

silli A:n konveksisuuden nojalla myos £2¥ € A. Siten x = y eli jos minimoija on, se on

2
yksikésitteinen.
Olemassaolon todistamiseksi otetaan jono (z,)5°, C A siten, ettd ||z,|| — § kun n — oc.
Kuten edelld, on A:n konveksisuuden ja suunnikasyhtélon nojalla

||zn — mez < 2Hxn|\2 + 2H:1:m||2 —45% -0, kun n, m — oo.

Siispd (z,) on Cauchy-jono tdydellisessid metrisessd avaruudessa A. Siten on olemassa o € A
siten, ettd x, — x¢. Koska normi on jatkuva, on

ol = i o] =
O
Lause 3.18. Olkoot E Hilbert-avaruus, A C E suljettu, konveksi ja epdityhjd, v € E ja y € A.

Talloin
||z —y|| = dist(z, A) = Re(x —y|z—y) <0 kaikilla z € A.

Todistus. Oletetaan ensin, etté ||z—y|| = dist(z, A). Jos z € Aja0 < t < 1, niin konveksisuuden
nojalla

y+tlz—y)=1—-ty+tze A

Siispé
le—ylP<llz—y—tlz—yp|f=@-y—tlz—y)lz—y—tz—1y))
=llz—ylP—tlx—ylz—y) —tlz—ylz—y) + ||z —y|]
= ||z —y|]* = 2tRe(z —y |z — y) + £*||z — y||*.
Siten

t
Re(m—y\z—y)§§|\z—y|\2—>0, kun ¢t — 0.

Kééntéen, oletetaan, ettd Re(x — y |2z — y) < 0 kaikilla z € A. Télloin

lz =2l =llz —y = (z = y)II”

= |lz = ylI* = 2Re(z —y |2 — ) + [lz = y[I* > [|z — ylI*

kaikilla 2 € A, eli ||z — y|| = dist(z, A). O
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3.1. Ortogonaaliset projektiot. Kaytetdin seuraavaksi edellistd minimointilausetta 3.18 eri-
koistapaukseen, jossa A on suljettu vektorialiavaruus.

Lause 3.19. Olkoon E Hilbert-avaruus ja M sen suljettu vektorialiavaruus. Jos x € E ja
y e M, niin
||z — y|| = dist(z, M) = (x —y) L M.

Todistus. Oletetaan ensin, etté ||z —y|| = dist(z, M). Jos z € M ja X € K, on myds y+ Az € M,
koska M on vektorialiavaruus. Siten Lauseen 3.18 nojalla

0> Re((z —y|(y+Az) —y)) = Re(A(z — y [ 2))
kaikilla A € K. Valitsemalla A = (z — y | z) saadaan
0> |(z—yl2)”
eli (x —y|z) = 0 kaikilla z € M. Toisin sanoen (z —y) L M.
Kéaantéden, oletetaan, ettd (r —y) L M. Jos z € M, niin z — y € M ja siten
O=(zx—ylz—y)=Re(z—ylz—1y) kaikilla z € M.
Lauseen 3.18 nojalla on siten ||z — y|| = dist(x, M). O

Maaritelma 3.20. Olkoon M Hilbert-avaruuden E suljettu vektorialiavaruus. Télloin kuvaus-
ta Py: E— M,
Pyxr =y  josjavain jos ||z — y|| = dist(z, M),
kutsutaan avaruuden E ortoprojektioksi vektorialiavaruudelle M.
Lauseen 3.17 nojalla ortoprojektio on hyvin mééritelty. Lauseen 3.19 nojalla ortoprojektion
madrittelee myos yksikésitteisesti
Pyre M ja x— Pyx L M.
Siten jokaisella vektorilla x € F on yksikésitteinen esitys muodossa
r=1y+ =z, missid y € M ja z € M*.
Lause 3.21. Olkoon M Hilbert-avaruuden E suljettu vektorialiavaruus. Talldin ortoprojektio
Py E— E on lineaarinen kuvaus.

Todistus. (Harjoitustehtava) O

Ortoprojektiota yleisempi késite on projektio, joka on vektoriavaruuden E lineaarikuvaus
P: E — E, jolle P> = P. Jos merkitsemme U = P(E) jaV =kerP = {z € E : Pz = 0},
sanotaan P:ta projektioksi avaruudelle U suuntaan V.

Projektiot ovat yksi-yhteen suhteessa suorien summien kanssa. Sanomme, ettd E on aliava-
ruuksien U ja V' suora summa, merkintind £ = U @V, jos

E=U+4+V={ut+v:uelwveV} ja UNV ={0}.

Jos P on projektio, on £ = P(FE) @ ker P. Jos taas E = U @ V, on kaikilla z € E yk-
sikésitteinen esitys ¢ = u + v, missd v € U ja v € V. Talloin asettamalla Pxr = u saadaan
vaadittu projektio.

Lause 3.22. Jos M on Hilbert-avarvuden E suljettu vektorialiavaruus, niin E = M & M~ ja
Py on avaruuden E projektio aliavaruudelle M suuntaan M*. Lisdksi

|| Przl|| < ||z kaikilla x € E.

Erityisesti Py on jatkuva lineaarioperaattori.
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Todistus. Lauseen 3.13 perusteella M+ on avaruuden E vektorialiavaruus. Aikaisemmin huo-
mattiin, ettd jokainen x € E voidaan kirjoittaa yksikésitteisesti muodossa © = Pyx+x — Py,
missi Pz € M jax— Py L M. Siten E = M+ M. Lisiiksi, jos # € MNM*, on méiritelmén
nojalla

J2]]* = (z|2) =0,
joten z = 0. Siten M N M+ = {0}, joten £ = M & M*.

Edelleen P]%/[x = Py, silla Pyx € M ja Pyax— Pyx =0 L M. Siten Py, on projektio. Koska
Pyw = x kaikille x € M, on Py (E) = M. Olkoon x € M+. T&llsin Py :_(_), silla 0 € M ja
x L M. Siten M+ C ker Py;. Toiseen suuntaan, jos x € E siten, ettd Pz = 0 on x L M, joten
x € M*. Siten M+ = ker Py,.

Lopuksi, Pythagoraan lauseen perusteella

|1 Pa|® < [|Pyl® + [l — Puyal]* = || Py + (2 = Pua)|]* = ||,
josta normiarvio seuraa. 0

3.2. Ortonormaalit kannat.

Maaritelméa 3.23. Sisdtuloavaruuden jono (e,,) on ortonormaali, jos

0, jos j # k
(ej!ek):{l J i
, jos 7 = k.

Esimerkkeji 3.24. (1) Kanoniset kantavektorit e, = (0,...,0,1,0,...) € 2, missd n:s termi
eroaa nollasta, muodostavat ortonormaalin jonon (e,)%2, avaruudessa 2.
(2) L*([0,27]) varustettuna sisétulolla

(z]y) = /[ | FO )

on Hilbert-avaruus. Jono (z,)nez, missi
1 . 1
" = ——(cos(nt) + isin(nt)), n € 7Z,te|0,2n],

“Var Ve

on ortonormaali jono avaruudessa L*([0, 27]), silld kaikilla n # m on

1 2 1 2r
(Tn | 2m) = —/ eMeimt dt = —/ eln=mt gt
27 Jo 21 Jo
B 1
-~ i2n(n —m)

T (t)

(ei(n—m)QW i 6i(n—m)O) =0

ja
2

| I L — 1
/ eMeint df = — 1dt = 1.
0 27 Jo

(mn|xn) = Y

Lause 3.25 (Besselin epayhtéld). Jos (e,) on ortonormaali jono Hilbert-avaruudessa E, niin

(@ ex)* < [l]l®

WE

B
Il

1

kaikilla x € E. Erityisest:

lim (z|ex) = 0.
k—o0
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Todistus. Jos (e,) on ortonormaali jono avaruudessa F ja z € E, niin

Z(m|ek er L Z x| eg)er kaikilla n € N,
k=1

silld kaikilla j = 1,...,n on

<:c — Zn:(x | ex)er

k=1

n

€j> = (z]e;) =) (xlex)(exle;) = (x]ej) = (x]e;) = 0.

k=1

Siten Pythagoraan lauseen mukaan

n

][ = ||& = > (x| er)en Zl’lek Zx!ek Z (] ex)]”
k=1 k= k= k=
Viite seuraa nyt antamalla n — oo. O

Maiaritelmé 3.26. Jos (e,) on ortonormaali jono Hilbert-avaruudessa E ja z € E, niin lukuja
(x| ex) sanotaan vektorin = Fourier-kertoimiksi jonon (e,) suhteen.

Palautetaan mieliin lineaarialgebrasta tuttu virittdmisen késite. Olkoon E vektoriavaruus ja
A C FE. Télloin joukon A virittdméa aliavaruutta merkitdan

span(A) := {Z Na; cneN N eK a € A} )

=1

Tamén joukon sulkeumaa FE:ssé merkitadn yleensi Span(A).

Lause 3.27. Olkoon E Hilbert-avaruus, (e;)j—, C E ddrellinen ortonormaali jono seki M =
span({e1,...,e,}). Tdlloin

a) M on suljettu E:n vektoriavaruus, eli M = span({ei1,...,en}).

b) jos Py on ortoprojektio M :lle, niin

Pyx = Z(JJ | er)er, rekE.
k=1

Todistus. Merkitaan kaikilla x € F

n

Pz = Z(x | ex)er

k=1

Kuvaus P on selvésti lineaarinen, silld z — (z | €;) on lineaarinen kaikilla j. Lisiksi Pythagoraan
lauseen ja Besselin epayhtélon nojalla on

[|1Pz|* = Z!xlek W< |lzllf,  zek

joten P on jatkuva. (Huomaa, ettd Besselin epdyht#lo toimii myos #érelliselle ortonormaalille
jonolle.)
Jos x € M, niin x = szl Arer joillakin skalaareilla A\, € K. Nyt

(x]ej) = Z)\k erlej) =\ kaikilla j =1,...,n
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joten Px = x kaikilla x € M. Siten
M={xe€FE: Px=x}=ker(l — P),

missé [ on identtinen kuvaus. Siten M = (I—P)~'({0}) on jatkuvan lineaarikuvauksen ytimen
suljettu vektorialiavaruus.
Kuten Besselin lauseen todistuksessa huomasimme,

ql(x—Z(x]ek)ek):O, j=1,...,n,

k=1
eli x — Px € M* kaikilla x € E. Siten Pz on haluttu ortoprojektio. 0

Osoitetaan seuraavaksi, ettd ortonormaaleista vektoreista muodostetun sarjan normi saadaan
ilmaistua vektoreiden kertoimien avulla.

Lause 3.28. Olkoon (e,)22, ortonormaali jono Hilbert-avaruudessa E. Jos X\, € K kaikilla
n € N, nun sarja

oo
Z Ak€r Suppenee jos ja vain jos Z I\]? < oo
k=1 k=1

2 o0
NG
k=1

Talloin pdtee

Todistus. Olkoon .
sn:Z)\kek, n € N.

T#lloin sarja suppenee jos ja vain jos (s,) on Cauchy-jono.
Olkoon siis p,q € N ja p < ¢. Télloin Pythagoraan lauseen nojalla

q p 2 q 2 q
Z )\kek - Z )\kek = Z )\kek = Z |)\k|2
k=1 k=1

k=p+1 k=p+1
Siistd osasummien s, muodostama jono suppenee jos ja vain jos sarja »_, |A\x|* suppenee, eli
olemme todistaneet ensimmaisen vaitteen.

Jos taas merkitaan
o0
T = E AK€,
k=1

saadaan sisdtulon jatkuvuuden ja (e,) vektoreiden ortogonaalisuuden nojalla

(x|e;) = (Z/\kek ej) = (nlggoz)\kek ej) :1115{.10 (Z)\kek ej> =\
k=1 k=1

kaikille 7 € N. Samanlaisella paattelylla
2 . . . .
l|z]]* = (z|x) = (x Z)\kek> = (x nh_)n;(}ZMq) = nh_)rglo (x Z)‘kek>
k=1 k=1 k=1
n—oo n—oo
k=1 k=1

k=1

|[sq — $p||2 =
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Seuraus 3.29 (Riesz-Fisherin lause). Olkoon E Hilbert-avaruus ja (ey)5e, sen ortonormaali
jono. Jos (\)52, € 2. niin loytyy sellainen x € E, etti

(x]er) = Ak, kaikilla k € N,
toisin sanoen, kuvaus x — ((z | ex))s2, on surjektio E — [2.

Todistus. Lauseen 3.28 nojallax = >~ | Agey, suppenee E:ssé, ja Fourier kertoimet (x| e;) = Ay
kaikille £ € N saadaan Lauseen 3.28 todistuksesta. 0

Mairitelma 3.30. Hilbert-avaruuden E ortonormaali jono (e,)>2, on Hilbertin kanta (tai
ortonormaali kanta) avaruudessa E, jos

span({e, : n € N}) =F.

Lause 3.31. Olkoon E Hilbert-avaruus. Talldin (e,)>2, C E on Hilbertin kanta avaruudessa
E jos ja vain jos se on maksimaalinen ortonormaali joukko avaruudessa E.

Todistus. Merkitddn M = span({e, : n € N}). Nyt M # FE on yhtépitavid sen kanssa, ettd
M+ # {0}. Tami taas on yhtépitivii sen kanssa, ettéd on olemassa jokin z € M+ jolle ||z|| = 1.
Tamé taas on yhtdpitdvad sen kanssa, ettd on olemassa x € F siten, ettd {x} U {e,}>>, on
ortonormaali, joka taas on sama kuin, ettd {e,}>2; ei ole maksimaalinen ortonormaali joukko
E'ssé. 0

Lause 3.32. Olkoon (e,,)$2, ortonormaali jono Hilbert-avaruudessa E. Tdilldin seuraavat ehdot
ovat yhtdpitavia:
a) jono (e,)s, on Hilbertin kanta avaruudessa F, )
b) sisitulot (z|e,) = 0 kaikilla n € N jos ja vain jos x = 0,
c) jokaisella x € E on voimassa
N
Hx—2($|en)enH—>0, kun N — oo,
n=1

d) jokaisella x € E on voimassa Parsevalin yht&lo:

)
121> =D (=] en)l,
n=1

e) jokaisella x,y € E on voimassa Plancherelin kaava:
(@]y) =D (xlea)ylen):
n=1
Todistus. Koska E = M & M=, missi M = span({e,, : n € N}), on a) eli M = E yhtéipitavii
ehdon M+ = {0} kanssa, joka taas on sama kuin ehto b) eli M+ = {0}, silli jokaisella joukolla
A C FE pitee
(At =A%
(Harjoitustehtava). Siispéd a) <= b).
Selvisti implikaatiot
e) = d) =)
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ovat totta. Osoitetaan vield puuttuvat implikaatiot
b) = ¢) = e).

Oletetaan siis, ettd b) on totta. Jos x € E, merkitdan
Yy = Z("E I €n>€n7
n=1

misséd sarja suppenee Besselin epédyhtédlon ja Lauseen 3.28 nojalla. Kaikilla k£ € N pétee

3 o) = le)

— 1
(ylex) = lim (Zl(:c [ en)en
eli y — x| ex) = 0 kaikilla £ € N. Ehdon b) nojalla siis y = x, joten olemme osoittaneet, etti c)
on totta.

Osoitetaan lopuksi implikaatio ¢) = €). Koska oletuksen mukaan

o

T = Z(:v len)en

n=1

kaikilla z € F, on sisédtulon jatkuvuuden ja lineaarisuuden perusteella jilleen

(el = Jim (St lenen ) = fim 3w lenen )

N—oo

n=1
=Y (zlen)enly) =Y (x]en)(ylen)-
n=1 n=1
Téssé oikeanpuoleinen sarja suppenee Holderin epéayhtéalon perusteella. ([l

Selvésti jokainen Hilbert-avaruus jossa on numeroituva Hilbertin kanta on separoituva. (Jos
(e,,) on E'm Hilbertin kanta, ja K C K numeroituva ja tihed K:ssa, on {d_ " \ie; = \; € K,n €
N} numeroituva ja tihed E':ssd.) Viite on totta toiseenkin suuntaan:

Lause 3.33. Jokaisessa separoituvassa Hilbert-avaruudessa E on Hilbertin kanta.

Todistus. Oletetaan ensin, ettd dim F = n < 00.0Olkoon z; € F \ {0}. T&lloin médrittelemélls
e1 = ||z1|| 7'z, saadaan ortonormaali joukko {e;}. Oletataan, ettd {ei,...,e,} C F on ortonor-
maali joukko ja z,41 € £\ span({ey, ..., e,}). Médritelladn

Ygr1 = Tqr1 — Pygia,

missd P, on ortogonaaliprojektio avaruudelle span({ey,...,e,}). Téalloin y, 11 # 0 ja y,41 L e
kaikilla i = 1, ..., q ja siten méérittelemélld e, 1 = ||y,21]| " y4+1 saadaan ortonormaali joukko
{e1,...,e441}. Kun ¢+ 1 = n, on ulottuvuuden mééritelmén nojalla £ = span({ey,...,€441})

ja etsitty kanta on loydetty.

Jos dim E = oo, tehdéén ylla esitelty ortonormeeraus dérettomélle méaaralle vektoreita. Ensin
tulee kuitenkin 16ytad sopiva joukko {z, }nen jolle ortonormeeraus tehddan. Tatd varten otetaan
avaruuden F separoituvuuden antama tihed numeroituva joukko {z, }nen C E ja heitetdén téstéa
pois vektorit joille pétee

zn € span({z1,..., 2n-1}),
eli méédritellddn {z,} C {z,} asettamalla x; = z; ja z,, = z,,, kaikille n > 1, missi

my, = min{k : z; ¢ span({z1,...,z,-1})}.
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Néin saadaan ortonormaali jono (e,)nen jolle péitee kaikilla N € N

span({e,}n_y) = span({a.}n_;) = span({z.} ;).
Siten joukon {z,} tiheyden perusteella
span({en}ny) = E
ja (én)nen on siten avaruuden E Hilbertin kanta. O

Edellisen tuloksen perusteella ndhdéaén, ettd kaikki ddretonulotteiset separoituvat Hilbert-
avaruudet ovat itse asiassa isometrisia Hilbert-avaruuden (2, || - ||2) kanssa: Olkoot E separoi-
tuva Hilbert-avaruus ja (e,) sen Lauseen 3.33 antama Hilbertin kanta. T&ll6in jokaisella z € E
on olemassa yksikésitteinen esitys

o0
-

n=1
ja siten kuvaus

T: 0= E: ()i = > Anen

on haluttu isometria (eli etdisyydet séilyttéava kuvaus):

IITx—TyHE—IIZ ynenHE—(Dxn w) = |z = yll..

Esimerkki 3.34. Otetaan esimerkiksi reaalikertoiminen L?([0, 1]). Sille eréifin Hilbertin kannan
antaa Haarin systeemi (h,,)>°,, joka méadritelldén seuraavasti: hy = X[o,1> P1 = X[0,1/21 — X[1/2,1)

hy = \/5()([0’1/4]—)([1/4,1/2]), hs = \/5()([1/273/4]—)([3/4,1}), ... Yleisesti kaikille £ > 0ja0 < j < 2k
maéadritellddn .
ha =22 (Xay = Xa;) -

. . 1 . 1 .
S S E

Haarin kannan Fourier kertoimet funktiolle f € L*(]0, 1]) saadaan kaavoista

it = [ poan i =2t ([ o= [ o),

(0,1]

missi jilleen n = 2% + j. Edelleen kaikille f € L*([0,1]) voidaan siis kirjoittaa

F=5(F I ha)h

missid n = 28 + 7,
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