
Määritelmä 3.16. Vektoriavaruuden osajoukko A ⊂ E on konveksi, jos kaikilla x, y ∈ A ja
t ∈ [0, 1] on (1−t)x+ty ∈ A, eli jos kaikkien joukon A pisteparien välinen jana kuuluu joukkoon
A.

Lause 3.17. Jos E on Hilbert -avaruus ja A ⊂ E konveksi ja suljettu, on olemassa täsmälleen
yksi x0 ∈ A joka minimoi normin A:ssa eli

||x0|| ≤ ||x|| kaikilla x ∈ A.

Todistus. Olkoon δ = inf{||x|| : x ∈ A}. Jos x, y ∈ A siten, että ||x|| = ||y|| = δ, on suunnika-
syhtälön nojalla

||x− y||2 = 2||x||2 + 2||y||2 − ||x+ y||2 = 4δ2 − 4

∣∣∣∣∣∣∣∣x+ y

2

∣∣∣∣∣∣∣∣2 ≤ 4δ2 − 4δ2 = 0,

sillä A:n konveksisuuden nojalla myös x+y
2

∈ A. Siten x = y eli jos minimoija on, se on
yksikäsitteinen.

Olemassaolon todistamiseksi otetaan jono (xn)
∞
n=1 ⊂ A siten, että ||xn|| → δ kun n → ∞.

Kuten edellä, on A:n konveksisuuden ja suunnikasyhtälön nojalla

||xn − xm||2 ≤ 2||xn||2 + 2||xm||2 − 4δ2 → 0, kun n,m→ ∞.

Siispä (xn) on Cauchy-jono täydellisessä metrisessä avaruudessa A. Siten on olemassa x0 ∈ A
siten, että xn → x0. Koska normi on jatkuva, on

||x0|| = lim
n→∞

||xn|| = δ.

□

Lause 3.18. Olkoot E Hilbert-avaruus, A ⊂ E suljettu, konveksi ja epätyhjä, x ∈ E ja y ∈ A.
Tällöin

||x− y|| = dist(x,A) ⇐⇒ Re(x− y | z − y) ≤ 0 kaikilla z ∈ A.

Todistus. Oletetaan ensin, että ||x−y|| = dist(x,A). Jos z ∈ A ja 0 < t < 1, niin konveksisuuden
nojalla

y + t(z − y) = (1− t)y + tz ∈ A.

Siispä

||x− y||2 ≤ ||x− y − t(z − y)||2 = (x− y − t(z − y) |x− y − t(z − y))

= ||x− y||2 − t(x− y | z − y)− t(z − y |x− y) + t2||z − y||2

= ||x− y||2 − 2tRe(x− y | z − y) + t2||z − y||2.

Siten

Re(x− y | z − y) ≤ t

2
||z − y||2 → 0, kun t→ 0.

Kääntäen, oletetaan, että Re(x− y | z − y) ≤ 0 kaikilla z ∈ A. Tällöin

||x− z||2 = ||x− y − (z − y)||2

= ||x− y||2 − 2Re(x− y | z − y) + ||z − y||2 ≥ ||x− y||2

kaikilla z ∈ A, eli ||x− y|| = dist(x,A). □
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3.1. Ortogonaaliset projektiot. Käytetään seuraavaksi edellistä minimointilausetta 3.18 eri-
koistapaukseen, jossa A on suljettu vektorialiavaruus.

Lause 3.19. Olkoon E Hilbert-avaruus ja M sen suljettu vektorialiavaruus. Jos x ∈ E ja
y ∈M , niin

||x− y|| = dist(x,M) ⇐⇒ (x− y) ⊥M.

Todistus. Oletetaan ensin, että ||x−y|| = dist(x,M). Jos z ∈M ja λ ∈ K, on myös y+λz ∈M ,
koska M on vektorialiavaruus. Siten Lauseen 3.18 nojalla

0 ≥ Re((x− y | (y + λz)− y)) = Re(λ̄(x− y | z))
kaikilla λ ∈ K. Valitsemalla λ = (x− y | z) saadaan

0 ≥ |(x− y | z)|2

eli (x− y | z) = 0 kaikilla z ∈M . Toisin sanoen (x− y) ⊥M .
Kääntäen, oletetaan, että (x− y) ⊥M . Jos z ∈M , niin z − y ∈M ja siten

0 = (x− y | z − y) = Re(x− y | z − y) kaikilla z ∈M.

Lauseen 3.18 nojalla on siten ||x− y|| = dist(x,M). □

Määritelmä 3.20. OlkoonM Hilbert-avaruuden E suljettu vektorialiavaruus. Tällöin kuvaus-
ta PM : E →M ,

PMx = y jos ja vain jos ||x− y|| = dist(x,M),

kutsutaan avaruuden E ortoprojektioksi vektorialiavaruudelle M .

Lauseen 3.17 nojalla ortoprojektio on hyvin määritelty. Lauseen 3.19 nojalla ortoprojektion
määrittelee myös yksikäsitteisesti

PMx ∈M ja x− PMx ⊥M.

Siten jokaisella vektorilla x ∈ E on yksikäsitteinen esitys muodossa

x = y + z, missä y ∈M ja z ∈M⊥.

Lause 3.21. Olkoon M Hilbert-avaruuden E suljettu vektorialiavaruus. Tällöin ortoprojektio
PM : E → E on lineaarinen kuvaus.

Todistus. (Harjoitustehtävä) □

Ortoprojektiota yleisempi käsite on projektio, joka on vektoriavaruuden E lineaarikuvaus
P : E → E, jolle P 2 = P . Jos merkitsemme U = P (E) ja V = kerP = {x ∈ E : Px = 0̄},
sanotaan P :tä projektioksi avaruudelle U suuntaan V .

Projektiot ovat yksi-yhteen suhteessa suorien summien kanssa. Sanomme, että E on aliava-
ruuksien U ja V suora summa, merkintänä E = U ⊕ V , jos

E = U + V = {u+ v : u ∈ U, v ∈ V } ja U ∩ V = {0̄}.
Jos P on projektio, on E = P (E) ⊕ kerP . Jos taas E = U ⊕ V , on kaikilla x ∈ E yk-

sikäsitteinen esitys x = u + v, missä u ∈ U ja v ∈ V . Tällöin asettamalla Px = u saadaan
vaadittu projektio.

Lause 3.22. Jos M on Hilbert-avaruuden E suljettu vektorialiavaruus, niin E = M ⊕M⊥ ja
PM on avaruuden E projektio aliavaruudelle M suuntaan M⊥. Lisäksi

||PMx|| ≤ ||x|| kaikilla x ∈ E.

Erityisesti PM on jatkuva lineaarioperaattori.
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Todistus. Lauseen 3.13 perusteella M⊥ on avaruuden E vektorialiavaruus. Aikaisemmin huo-
mattiin, että jokainen x ∈ E voidaan kirjoittaa yksikäsitteisesti muodossa x = PMx+x−PMx,
missä PMx ∈M ja x−PMx ⊥M . Siten E =M+M⊥. Lisäksi, jos x ∈M∩M⊥, on määritelmän
nojalla

||x||2 = (x |x) = 0,

joten x = 0̄. Siten M ∩M⊥ = {0̄}, joten E =M ⊕M⊥.
Edelleen P 2

Mx = PMx, sillä PMx ∈M ja PMx−PMx = 0̄ ⊥M . Siten PM on projektio. Koska
PMx = x kaikille x ∈ M , on PM(E) = M . Olkoon x ∈ M⊥. Tällöin PMx = 0̄, sillä 0̄ ∈ M ja
x ⊥M . Siten M⊥ ⊂ kerPM . Toiseen suuntaan, jos x ∈ E siten, että PMx = 0̄ on x ⊥M , joten
x ∈M⊥. Siten M⊥ = kerPM .

Lopuksi, Pythagoraan lauseen perusteella

||PMx||2 ≤ ||PMx||2 + ||x− PMx||2 = ||PMx+ (x− PMx)||2 = ||x||2,
josta normiarvio seuraa. □

3.2. Ortonormaalit kannat.

Määritelmä 3.23. Sisätuloavaruuden jono (en) on ortonormaali, jos

(ej | ek) =

{
0, jos j ̸= k

1, jos j = k.

Esimerkkejä 3.24. (1) Kanoniset kantavektorit en = (0, . . . , 0, 1, 0, . . . ) ∈ ℓ2, missä n:s termi
eroaa nollasta, muodostavat ortonormaalin jonon (en)

∞
n=1 avaruudessa ℓ2.

(2) L2([0, 2π]) varustettuna sisätulolla

(x | y) =
∫
[0,2π]

x(t)y(t) dµ(t)

on Hilbert-avaruus. Jono (xn)n∈Z, missä

xn(t) =
1√
2π
eint =

1√
2π

(cos(nt) + i sin(nt)), n ∈ Z, t ∈ [0, 2π],

on ortonormaali jono avaruudessa L2([0, 2π]), sillä kaikilla n ̸= m on

(xn |xm) =
1

2π

∫ 2π

0

einteimt dt =
1

2π

∫ 2π

0

ei(n−m)t dt

=
1

i2π(n−m)
(ei(n−m)2π − ei(n−m)0) = 0

ja

(xn |xn) =
1

2π

∫ 2π

0

einteint dt =
1

2π

∫ 2π

0

1 dt = 1.

Lause 3.25 (Besselin epäyhtälö). Jos (en) on ortonormaali jono Hilbert-avaruudessa E, niin
∞∑
k=1

|(x | ek)|2 ≤ ||x||2

kaikilla x ∈ E. Erityisesti
lim
k→∞

(x | ek) = 0.
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Todistus. Jos (en) on ortonormaali jono avaruudessa E ja x ∈ E, niin

x−
n∑

k=1

(x | ek)ek ⊥
n∑

k=1

(x | ek)ek kaikilla n ∈ N,

sillä kaikilla j = 1, . . . , n on(
x−

n∑
k=1

(x | ek)ek
∣∣∣∣ ej) = (x | ej)−

n∑
k=1

(x | ek)(ek | ej) = (x | ej)− (x | ej) = 0.

Siten Pythagoraan lauseen mukaan

||x||2 =
∣∣∣∣∣∣∣∣x− n∑

k=1

(x | ek)ek
∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣ n∑

k=1

(x | ek)ek
∣∣∣∣∣∣∣∣2 ≥ ∣∣∣∣∣∣∣∣ n∑

k=1

(x | ek)ek
∣∣∣∣∣∣∣∣2 = n∑

k=1

|(x | ek)|2.

Väite seuraa nyt antamalla n→ ∞. □

Määritelmä 3.26. Jos (en) on ortonormaali jono Hilbert-avaruudessa E ja x ∈ E, niin lukuja
(x | ek) sanotaan vektorin x Fourier-kertoimiksi jonon (en) suhteen.

Palautetaan mieliin lineaarialgebrasta tuttu virittämisen käsite. Olkoon E vektoriavaruus ja
A ⊂ E. Tällöin joukon A virittämää aliavaruutta merkitään

span(A) :=

{
n∑

i=1

λiai : n ∈ N, λi ∈ K, ai ∈ A

}
.

Tämän joukon sulkeumaa E:ssä merkitään yleensä span(A).

Lause 3.27. Olkoon E Hilbert-avaruus, (ej)
n
j=1 ⊂ E äärellinen ortonormaali jono sekä M =

span({e1, . . . , en}). Tällöin
a) M on suljettu E:n vektoriavaruus, eli M = span({e1, . . . , en}).
b) jos PM on ortoprojektio M :lle, niin

PMx =
n∑

k=1

(x | ek)ek, x ∈ E.

Todistus. Merkitään kaikilla x ∈ E

Px =
n∑

k=1

(x | ek)ek.

Kuvaus P on selvästi lineaarinen, sillä x 7→ (x | ej) on lineaarinen kaikilla j. Lisäksi Pythagoraan
lauseen ja Besselin epäyhtälön nojalla on

||Px||2 =
n∑

k=1

|(x | ek)|2 ≤ ||x||2, x ∈ E,

joten P on jatkuva. (Huomaa, että Besselin epäyhtälö toimii myös äärelliselle ortonormaalille
jonolle.)

Jos x ∈M , niin x =
∑n

k=1 λkek joillakin skalaareilla λk ∈ K. Nyt

(x | ej) =
n∑

k=1

λk(ek | ej) = λj kaikilla j = 1, . . . , n,
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joten Px = x kaikilla x ∈M . Siten

M = {x ∈ E : Px = x} = ker(I − P ),

missä I on identtinen kuvaus. SitenM = (I−P )−1({0̄}) on jatkuvan lineaarikuvauksen ytimenä
suljettu vektorialiavaruus.

Kuten Besselin lauseen todistuksessa huomasimme,

ej ⊥

(
x−

n∑
k=1

(x | ek)ek

)
= 0, j = 1, . . . , n,

eli x− Px ∈M⊥ kaikilla x ∈ E. Siten Px on haluttu ortoprojektio. □

Osoitetaan seuraavaksi, että ortonormaaleista vektoreista muodostetun sarjan normi saadaan
ilmaistua vektoreiden kertoimien avulla.

Lause 3.28. Olkoon (en)
∞
n=1 ortonormaali jono Hilbert-avaruudessa E. Jos λn ∈ K kaikilla

n ∈ N, niin sarja
∞∑
k=1

λkek suppenee jos ja vain jos
∞∑
k=1

|λk|2 <∞.

Tällöin pätee ∣∣∣∣∣
∣∣∣∣∣

∞∑
k=1

λkek

∣∣∣∣∣
∣∣∣∣∣
2

=
∞∑
k=1

|λk|2.

Todistus. Olkoon

sn =
n∑

k=1

λkek, n ∈ N.

Tällöin sarja suppenee jos ja vain jos (sn) on Cauchy-jono.
Olkoon siis p, q ∈ N ja p < q. Tällöin Pythagoraan lauseen nojalla

||sq − sp||2 =

∣∣∣∣∣
∣∣∣∣∣

q∑
k=1

λkek −
p∑

k=1

λkek

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣

q∑
k=p+1

λkek

∣∣∣∣∣
∣∣∣∣∣
2

=

q∑
k=p+1

|λk|2.

Siistä osasummien sn muodostama jono suppenee jos ja vain jos sarja
∑

k |λk|2 suppenee, eli
olemme todistaneet ensimmäisen väitteen.

Jos taas merkitään

x =
∞∑
k=1

λkek,

saadaan sisätulon jatkuvuuden ja (en) vektoreiden ortogonaalisuuden nojalla

(x | ej) =
( ∞∑

k=1

λkek

∣∣∣∣ ej) =

(
lim
n→∞

n∑
k=1

λkek

∣∣∣∣ ej) = lim
n→∞

( n∑
k=1

λkek

∣∣∣∣ ej) = λj

kaikille j ∈ N. Samanlaisella päättelyllä

||x||2 = (x |x) =
(
x

∣∣∣∣ ∞∑
k=1

λkek

)
=

(
x

∣∣∣∣ lim
n→∞

n∑
k=1

λkek

)
= lim

n→∞

(
x

∣∣∣∣ n∑
k=1

λkek

)

= lim
n→∞

n∑
k=1

λ̄k(x | ek) = lim
n→∞

n∑
k=1

λ̄kλk =
∞∑
k=1

|λk|2.
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□

Seuraus 3.29 (Riesz-Fisherin lause). Olkoon E Hilbert-avaruus ja (ek)
∞
k=1 sen ortonormaali

jono. Jos (λk)
∞
k=1 ∈ l2. niin löytyy sellainen x ∈ E, että

(x | ek) = λk, kaikilla k ∈ N,

toisin sanoen, kuvaus x 7→ ((x | ek))∞k=1 on surjektio E → l2.

Todistus. Lauseen 3.28 nojalla x =
∑∞

k=1 λkek suppenee E:ssä, ja Fourier kertoimet (x | ek) = λk
kaikille k ∈ N saadaan Lauseen 3.28 todistuksesta. □

Määritelmä 3.30. Hilbert-avaruuden E ortonormaali jono (en)
∞
n=1 on Hilbertin kanta (tai

ortonormaali kanta) avaruudessa E, jos

span({en : n ∈ N}) = E.

Lause 3.31. Olkoon E Hilbert-avaruus. Tällöin (en)
∞
n=1 ⊂ E on Hilbertin kanta avaruudessa

E jos ja vain jos se on maksimaalinen ortonormaali joukko avaruudessa E.

Todistus. Merkitään M = span({en : n ∈ N}). Nyt M ̸= E on yhtäpitävää sen kanssa, että
M⊥ ̸= {0̄}. Tämä taas on yhtäpitävää sen kanssa, että on olemassa jokin x ∈M⊥ jolle ||x|| = 1.
Tämä taas on yhtäpitävää sen kanssa, että on olemassa x ∈ E siten, että {x} ∪ {en}∞n=1 on
ortonormaali, joka taas on sama kuin, että {en}∞n=1 ei ole maksimaalinen ortonormaali joukko
E:ssä. □

Lause 3.32. Olkoon (en)
∞
n=1 ortonormaali jono Hilbert-avaruudessa E. Tällöin seuraavat ehdot

ovat yhtäpitäviä:

a) jono (en)
∞
n=1 on Hilbertin kanta avaruudessa E,

b) sisätulot (x | en) = 0 kaikilla n ∈ N jos ja vain jos x = 0̄,
c) jokaisella x ∈ E on voimassa∣∣∣∣x− N∑

n=1

(x | en)en
∣∣∣∣→ 0, kun N → ∞,

d) jokaisella x ∈ E on voimassa Parsevalin yhtälö:

||x||2 =
∞∑
n=1

|(x | en)|2,

e) jokaisella x, y ∈ E on voimassa Plancherelin kaava:

(x | y) =
∞∑
n=1

(x | en)(y | en).

Todistus. Koska E = M̄ ⊕ M̄⊥, missä M = span({en : n ∈ N}), on a) eli M̄ = E yhtäpitävää
ehdon M̄⊥ = {0̄} kanssa, joka taas on sama kuin ehto b) eli M⊥ = {0̄}, sillä jokaisella joukolla
A ⊂ E pätee

(Ā)⊥ = A⊥.

(Harjoitustehtävä). Siispä a) ⇐⇒ b).
Selvästi implikaatiot

e) =⇒ d) =⇒ b)
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ovat totta. Osoitetaan vielä puuttuvat implikaatiot

b) =⇒ c) =⇒ e).

Oletetaan siis, että b) on totta. Jos x ∈ E, merkitään

y =
∞∑
n=1

(x | en)en,

missä sarja suppenee Besselin epäyhtälön ja Lauseen 3.28 nojalla. Kaikilla k ∈ N pätee

(y | ek) = lim
N→∞

( N∑
n=1

(x | en)en
∣∣∣∣ ek) = (x | ek)

eli y − x | ek) = 0 kaikilla k ∈ N. Ehdon b) nojalla siis y = x, joten olemme osoittaneet, että c)
on totta.

Osoitetaan lopuksi implikaatio c) =⇒ e). Koska oletuksen mukaan

x =
∞∑
n=1

(x | en)en

kaikilla x ∈ E, on sisätulon jatkuvuuden ja lineaarisuuden perusteella jälleen

(x | y) = lim
N→∞

( N∑
n=1

(x | en)en
∣∣∣∣ y) = lim

N→∞

N∑
n=1

(x | en)(en | y)

=
∞∑
n=1

(x | en)(en | y) =
∞∑
n=1

(x | en)(y | en).

Tässä oikeanpuoleinen sarja suppenee Hölderin epäyhtälön perusteella. □

Selvästi jokainen Hilbert-avaruus jossa on numeroituva Hilbertin kanta on separoituva. (Jos
(en) on E:n Hilbertin kanta, ja K ⊂ K numeroituva ja tiheä K:ssa, on {

∑n
i=1 λiei : λi ∈ K,n ∈

N} numeroituva ja tiheä E:ssä.) Väite on totta toiseenkin suuntaan:

Lause 3.33. Jokaisessa separoituvassa Hilbert-avaruudessa E on Hilbertin kanta.

Todistus. Oletetaan ensin, että dimE = n < ∞.Olkoon x1 ∈ E \ {0̄}. Tällöin määrittelemällä
e1 = ||x1||−1x1 saadaan ortonormaali joukko {e1}. Oletataan, että {e1, . . . , eq} ⊂ E on ortonor-
maali joukko ja xq+1 ∈ E \ span({e1, . . . , eq}). Määritellään

yq+1 = xq+1 − Pqxq+1,

missä Pq on ortogonaaliprojektio avaruudelle span({e1, . . . , eq}). Tällöin yq+1 ̸= 0̄ ja yq+1 ⊥ ei
kaikilla i = 1, . . . , q ja siten määrittelemällä eq+1 = ||yq+1||−1yq+1 saadaan ortonormaali joukko
{e1, . . . , eq+1}. Kun q + 1 = n, on ulottuvuuden määritelmän nojalla E = span({e1, . . . , eq+1})
ja etsitty kanta on löydetty.

Jos dimE = ∞, tehdään yllä esitelty ortonormeeraus äärettömälle määrälle vektoreita. Ensin
tulee kuitenkin löytää sopiva joukko {xn}n∈N jolle ortonormeeraus tehdään. Tätä varten otetaan
avaruuden E separoituvuuden antama tiheä numeroituva joukko {zn}n∈N ⊂ E ja heitetään tästä
pois vektorit joille pätee

zn ∈ span({z1, . . . , zn−1}),
eli määritellään {xn} ⊂ {zn} asettamalla x1 = z1 ja xn = zmn kaikille n > 1, missä

mn = min{k : zk /∈ span({x1, . . . , xn−1})}.
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Näin saadaan ortonormaali jono (en)n∈N jolle pätee kaikilla N ∈ N
span({en}Nn=1) = span({xn}Nn=1) = span({zn}mN

n=1).

Siten joukon {zn} tiheyden perusteella

span({en}∞n=1) = E

ja (en)n∈N) on siten avaruuden E Hilbertin kanta. □

Edellisen tuloksen perusteella nähdään, että kaikki ääretönulotteiset separoituvat Hilbert-
avaruudet ovat itse asiassa isometrisia Hilbert-avaruuden (ℓ2, || · ||2) kanssa: Olkoot E separoi-
tuva Hilbert-avaruus ja (en) sen Lauseen 3.33 antama Hilbertin kanta. Tällöin jokaisella x ∈ E
on olemassa yksikäsitteinen esitys

x =
∞∑
n=1

(x | en)en.

ja siten kuvaus

T : ℓ2 → E : (λn)
∞
n=1 7→

∞∑
n=1

λnen

on haluttu isometria (eli etäisyydet säilyttävä kuvaus):

||Tx− Ty||E = ||
∞∑
n=1

(xn − yn)en||E =

(
∞∑
n=1

|xn − yn|2
) 1

2

= ||x− y||2.

Esimerkki 3.34. Otetaan esimerkiksi reaalikertoiminen L2([0, 1]). Sille erään Hilbertin kannan
antaa Haarin systeemi (hn)

∞
n=0, joka määritellään seuraavasti: h0 = χ[0,1], h1 = χ[0,1/2] −χ[1/2,1],

h2 =
√
2(χ[0,1/4]−χ[1/4,1/2]), h3 =

√
2(χ[1/2,3/4]−χ[3/4,1]), . . . Yleisesti kaikille k ≥ 0 ja 0 ≤ j < 2k

määritellään
hn = 2

k
2

(
χ∆+

n
− χ∆−

n

)
,

missä n = 2k + j,

∆+
n =

[
j

2k
,
j + 1

2

2k

]
ja ∆−

n =

[
j + 1

2

2k
,
j + 1

2k

]
.

Haarin kannan Fourier kertoimet funktiolle f ∈ L2([0, 1]) saadaan kaavoista

(f |h0) =
∫
[0,1]

f(t) dt, (f |hn) = 2
k
2

(∫
∆+

n

f(t) dt−
∫
∆−

n

f(t) dt

)
,

missä jälleen n = 2k + j. Edelleen kaikille f ∈ L2([0, 1]) voidaan siis kirjoittaa

f =
∞∑
n=0

(f |hn)hn.
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