
Hilbert Spaces 2026 (MATS2210)

Assignment 2

Solutions

Exercise 2.1

We need to show that there exist constants C1, C2 > 0 such that

C1∥f∥∞ ≤ ∥f∥1 ≤ C2∥f∥∞ for all f ∈ Ck([0, 1]).

(a) C2: We have,

∥f∥1 =
k∑

j=0

∥f (j)∥∞.

For each j we have
∥f (j)∥∞ ≤ sup

0≤l≤k
∥f (l)∥∞ = ∥f∥∞.

Since the sum contains k + 1 terms, it follows that

∥f∥1 ≤ (k + 1)∥f∥∞.

(b) C1: We have,
∥f∥∞ = max

0≤j≤k
∥f (j)∥∞.

By the property of non-negative real munbers

For any real numbers a1, a2, . . . , an ≥ 0, max
1≤i≤n

ai ≤
n∑

i=1

ai.

Therefore we get,

∥f∥∞ ≤
k∑

j=0

∥f (j)∥∞ = ∥f∥1.

Hence by (a) and (b), we obtain

∥f∥∞ ≤ ∥f∥1 ≤ (k + 1)∥f∥∞ for all f ∈ Ck([0, 1]).

Therefore, the norms ∥ · ∥∞ and ∥ · ∥1 are equivalent on Ck([0, 1]).
□
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Exercise 2.2

Let (xn) ∈ E be a Cauchy sequence and (yn) ∈ E, a subsequence converges to some x ∈ E.

Claim: (xn) converges to x.

Proof. Let ε > 0 , since (xn) is Cauchy, ∃ N1 ∈ N such that

∥xn − xm∥ <
ε

2
for all n,m ≥ N1.

Also, (yn) converges to x, there exists N2 ∈ N such that

∥yn − x∥ <
ε

2
for all n ≥ N2.

Now choose N = max{N1, kN2} then, for all n ≥ max{N1, kN2}, we have

∥xn − x∥ ≤ ∥xn − ykN2
∥+ ∥yN2 − x∥ <

ε

2
+

ε

2
= ε.

Therefore, for every ε > 0 there exists N ∈ N such that

∥xn − x∥ < ε for all n ≥ N,

which shows that (xn) converges to x in E.

Exercise 2.3

We need to show that T is linear and ∃ C > 0 such that

∥T (x)∥ℓ1 ≤ C ∥x∥ℓ2 for all x ∈ E.

T is clearly linear since for x = (xk), y = (yk) ∈ ℓ2 and α, β ∈ R (or C). We have

T (αx+ βy) = T ((αxk + βyk)k∈N) =

(
αxk + βyk

k

)
k∈N

= αT (x) + βT (y).

Now, let x = (xk) ∈ ℓ2. Then

∥Tx∥ℓ1 =
∞∑
k=1

∣∣∣xk

k

∣∣∣ = ∞∑
k=1

|xk| ·
1

k
.

By the Hölder inequality,

∞∑
k=1

|xk| ·
1

k
≤

(
∞∑
k=1

|xk|2
)1/2( ∞∑

k=1

1

k2

)1/2

.
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From lecture notes we know
∞∑
k=1

1

k2
=

π2

6
,

Then

∥Tx∥ℓ1 ≤

(
C =

√
π2

6

)
∥x∥ℓ2 .

Thus T is a bounded linear operator from ℓ2 to ℓ1, and by definition of operator norm
we get,

∥T∥ ≤
√

π2

6
.

□

Exercise 2.4

We will use the following result for any real numbers a, b and p ≥ 1, we have

|a+ b|p ≤ 2p(|a|p + |b|p),

which follows from the convexity of t 7→ |t|p.

Now for almost every x ∈ Ω,

|f(x) + g(x)|p ≤ 2p (|f(x)|p + |g(x)|p) .

Integrate both side over Ω,∫
Ω

|f + g|p dµ ≤
∫
Ω

2p (|f |p + |g|p) dµ = 2p
(∫

Ω

|f |p dµ+

∫
Ω

|g|p dµ
)
.

Thus we obtain, ∫
Ω

|f + g|p dµ ≤ 2p
(
∥f∥pp + ∥g∥pp

)
.

□

Exercise 2.5

Let C be the set of all Cauchy sequences in (X, d). Define an equivalence relation ∼ on C by

(xn) ∼ (yn) ⇐⇒ lim
n→∞

d(xn, yn) = 0.

Let X := C/ ∼ be the set of equivalence classes, and denote the class of (xn) by [xn].
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Define d : X ×X → R by

d([xn], [yn]) := lim
n→∞

d(xn, yn).

This limit exists since (xn) and (yn) are Cauchy sequences.

Define an embedding ι : X → X by

ι(x) := [(x, x, x, . . . )].

Then ι is an isometric embedding, since

d(ι(x), ι(y)) = d(x, y).

• X is dense in X:

We will show that for every [xn] ∈ X and every ε > 0, there exists x ∈ X such that

d([xn], ι(x)) < ε.

Let [xn] ∈ X. Since (xn) is a Cauchy sequence in X, there exists N ∈ N such that

d(xn, xm) < ε for all n,m ≥ N.

Fix n ≥ N and consider the constant sequence (xn, xn, xn, . . . ). Then

d([xn], ι(xn)) = lim
k→∞

d(xk, xn) ≤ ε.

Hence, for every ε > 0, there exists xn ∈ X such that

d([xn], ι(xn)) < ε,

which shows that X is dense in X.

• Completeness of X:

Let (ai)
∞
i=1 = ([(xi

n)])
∞
i=1 be a Cauchy sequence in X. By the density of X in X, for

each i ∈ N there exists an index ji ∈ N such that

d(ai, x
i
ji
) <

1

i
.

Since (ai) is a Cauchy sequence in X, it follows that the sequence (xi
ji
)∞i=1 is a Cauchy

sequence in X. Hence its equivalence class

a∞ := [(xi
ji
)]

belongs to X.

Finally, for each i ∈ N we have

d(ai, a∞) ≤ d(ai, x
i
ji
) + d(xi

ji
, a∞) <

1

i
+ lim

k→∞
d(xi

ji
, xk

jk
),

which tends to zero as i → ∞. Therefore ai → a∞ in X.

Thus every Cauchy sequence in X converges, and (X, d) is complete.

□
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