

Hilbert Spaces 2026 (MATS2210)

Assignment 2

Solutions

Exercise 2.1

We need to show that there exist constants $C_1, C_2 > 0$ such that

$$C_1\|f\|_\infty \leq \|f\|_1 \leq C_2\|f\|_\infty \quad \text{for all } f \in C^k([0, 1]).$$

(a) C_2 : We have,

$$\|f\|_1 = \sum_{j=0}^k \|f^{(j)}\|_\infty.$$

For each j we have

$$\|f^{(j)}\|_\infty \leq \sup_{0 \leq l \leq k} \|f^{(l)}\|_\infty = \|f\|_\infty.$$

Since the sum contains $k + 1$ terms, it follows that

$$\|f\|_1 \leq (k + 1)\|f\|_\infty.$$

(b) C_1 : We have,

$$\|f\|_\infty = \max_{0 \leq j \leq k} \|f^{(j)}\|_\infty.$$

By the property of non-negative real numbers

$$\text{For any real numbers } a_1, a_2, \dots, a_n \geq 0, \quad \max_{1 \leq i \leq n} a_i \leq \sum_{i=1}^n a_i.$$

Therefore we get,

$$\|f\|_\infty \leq \sum_{j=0}^k \|f^{(j)}\|_\infty = \|f\|_1.$$

Hence by (a) and (b), we obtain

$$\|f\|_\infty \leq \|f\|_1 \leq (k + 1)\|f\|_\infty \quad \text{for all } f \in C^k([0, 1]).$$

Therefore, the norms $\|\cdot\|_\infty$ and $\|\cdot\|_1$ are equivalent on $C^k([0, 1])$.

□

Exercise 2.2

Let $(x_n) \in E$ be a Cauchy sequence and $(y_n) \in E$, a subsequence converges to some $x \in E$.

Claim: (x_n) converges to x .

Proof. Let $\varepsilon > 0$, since (x_n) is Cauchy, $\exists N_1 \in \mathbb{N}$ such that

$$\|x_n - x_m\| < \frac{\varepsilon}{2} \quad \text{for all } n, m \geq N_1.$$

Also, (y_n) converges to x , there exists $N_2 \in \mathbb{N}$ such that

$$\|y_n - x\| < \frac{\varepsilon}{2} \quad \text{for all } n \geq N_2.$$

Now choose $N = \max\{N_1, k_{N_2}\}$ then, for all $n \geq \max\{N_1, k_{N_2}\}$, we have

$$\|x_n - x\| \leq \|x_n - y_{k_{N_2}}\| + \|y_{N_2} - x\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Therefore, for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$\|x_n - x\| < \varepsilon \quad \text{for all } n \geq N,$$

which shows that (x_n) converges to x in E . □

Exercise 2.3

We need to show that T is linear and $\exists C > 0$ such that

$$\|T(x)\|_{\ell^1} \leq C \|x\|_{\ell^2} \quad \text{for all } x \in E.$$

T is clearly linear since for $x = (x_k), y = (y_k) \in \ell^2$ and $\alpha, \beta \in \mathbb{R}$ (or \mathbb{C}). We have

$$T(\alpha x + \beta y) = T((\alpha x_k + \beta y_k)_{k \in \mathbb{N}}) = \left(\frac{\alpha x_k + \beta y_k}{k} \right)_{k \in \mathbb{N}} = \alpha T(x) + \beta T(y).$$

Now, let $x = (x_k) \in \ell^2$. Then

$$\|Tx\|_{\ell^1} = \sum_{k=1}^{\infty} \left| \frac{x_k}{k} \right| = \sum_{k=1}^{\infty} |x_k| \cdot \frac{1}{k}.$$

By the Hölder inequality,

$$\sum_{k=1}^{\infty} |x_k| \cdot \frac{1}{k} \leq \left(\sum_{k=1}^{\infty} |x_k|^2 \right)^{1/2} \left(\sum_{k=1}^{\infty} \frac{1}{k^2} \right)^{1/2}.$$

From lecture notes we know

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6},$$

Then

$$\|Tx\|_{\ell^1} \leq \left(C = \sqrt{\frac{\pi^2}{6}} \right) \|x\|_{\ell^2}.$$

Thus T is a bounded linear operator from ℓ^2 to ℓ^1 , and by definition of operator norm we get,

$$\|T\| \leq \sqrt{\frac{\pi^2}{6}}.$$

□

Exercise 2.4

We will use the following result for any real numbers a, b and $p \geq 1$, we have

$$|a + b|^p \leq 2^p (|a|^p + |b|^p),$$

which follows from the convexity of $t \mapsto |t|^p$.

Now for almost every $x \in \Omega$,

$$|f(x) + g(x)|^p \leq 2^p (|f(x)|^p + |g(x)|^p).$$

Integrate both side over Ω ,

$$\int_{\Omega} |f + g|^p d\mu \leq \int_{\Omega} 2^p (|f|^p + |g|^p) d\mu = 2^p \left(\int_{\Omega} |f|^p d\mu + \int_{\Omega} |g|^p d\mu \right).$$

Thus we obtain,

$$\int_{\Omega} |f + g|^p d\mu \leq 2^p (\|f\|_p^p + \|g\|_p^p).$$

□

Exercise 2.5

Let \mathcal{C} be the set of all Cauchy sequences in (X, d) . Define an equivalence relation \sim on \mathcal{C} by

$$(x_n) \sim (y_n) \iff \lim_{n \rightarrow \infty} d(x_n, y_n) = 0.$$

Let $\overline{X} := \mathcal{C} / \sim$ be the set of equivalence classes, and denote the class of (x_n) by $[x_n]$.

Define $\bar{d} : \overline{X} \times \overline{X} \rightarrow \mathbb{R}$ by

$$\bar{d}([x_n], [y_n]) := \lim_{n \rightarrow \infty} d(x_n, y_n).$$

This limit exists since (x_n) and (y_n) are Cauchy sequences.

Define an embedding $\iota : X \rightarrow \overline{X}$ by

$$\iota(x) := [(x, x, x, \dots)].$$

Then ι is an isometric embedding, since

$$\bar{d}(\iota(x), \iota(y)) = d(x, y).$$

• **X is dense in \overline{X} :**

We will show that for every $[x_n] \in \overline{X}$ and every $\varepsilon > 0$, there exists $x \in X$ such that

$$\bar{d}([x_n], \iota(x)) < \varepsilon.$$

Let $[x_n] \in \overline{X}$. Since (x_n) is a Cauchy sequence in X , there exists $N \in \mathbb{N}$ such that

$$d(x_n, x_m) < \varepsilon \quad \text{for all } n, m \geq N.$$

Fix $n \geq N$ and consider the constant sequence (x_n, x_n, x_n, \dots) . Then

$$\bar{d}([x_n], \iota(x_n)) = \lim_{k \rightarrow \infty} d(x_k, x_n) \leq \varepsilon.$$

Hence, for every $\varepsilon > 0$, there exists $x_n \in X$ such that

$$\bar{d}([x_n], \iota(x_n)) < \varepsilon,$$

which shows that X is dense in \overline{X} .

• **Completeness of \overline{X} :**

Let $(a_i)_{i=1}^{\infty} = ([(x_n^i)])_{i=1}^{\infty}$ be a Cauchy sequence in \overline{X} . By the density of X in \overline{X} , for each $i \in \mathbb{N}$ there exists an index $j_i \in \mathbb{N}$ such that

$$\bar{d}(a_i, x_{j_i}^i) < \frac{1}{i}.$$

Since (a_i) is a Cauchy sequence in \overline{X} , it follows that the sequence $(x_{j_i}^i)_{i=1}^{\infty}$ is a Cauchy sequence in X . Hence its equivalence class

$$a_{\infty} := [(x_{j_i}^i)]$$

belongs to \overline{X} .

Finally, for each $i \in \mathbb{N}$ we have

$$\bar{d}(a_i, a_{\infty}) \leq \bar{d}(a_i, x_{j_i}^i) + \bar{d}(x_{j_i}^i, a_{\infty}) < \frac{1}{i} + \lim_{k \rightarrow \infty} d(x_{j_i}^i, x_{j_k}^k),$$

which tends to zero as $i \rightarrow \infty$. Therefore $a_i \rightarrow a_{\infty}$ in \overline{X} .

Thus every Cauchy sequence in \overline{X} converges, and (\overline{X}, \bar{d}) is complete.

□