suppenee avaruudessa K. Niille z joille g(x) = oo, voidaan asettaa f(x) = 0. Talloin |f(x)| <
g(x) kaikilla z € 2 ja siten f € LP. Nyt Fatoun lemman avulla ndhddan ctta

k J k
P ) P
[l nlan= [ tm]> 5= 5]
Q n=1 Qi7ee n=1 n=1
J k »
ghmlnf/ fn_ fn d/"'_>0
kun k£ — oo.
Siispd jokainen avaruuden LP itseisesti suppeneva sarja suppenee. joten LP on tédydellinen
Lauseen 2.18 nojalla. O

Olemme jo aikaisemmin mééritelleet avaruuden B(€2, K) supremum-normilla. Ollakseen yh-
teensopiva muiden LP-avaruuksien kanssa L*-mééritellisan oleellisen supremumin avulla:

1flloo := esss$1p\f(x)] =inf{M : p({x € Q : |f(x)]>M}) =0}
TE
ja
L*(Q) ={f: Q= K : f mitallinen ja ||f||e < o0}/ ~,
kuten muillekin LP-avaruuksille eli f ~ g jos ja vain jos f = g melkein kaikkialla.

Lause 2.30. (L>(Q), || - ||<) on Banach-avaruus.

Todistus. Ensinnédkin L>(2) on vektoriavaruus ja || - ||oc normi. (Miksi?)

Olkoon (f,)s, C L*(Q2) Cauchy-jono avaruudessa (L>(2),]|| - ||~). Talloin on olemassa
M < oo siten, ettd || f,|| < M kaikilla n € N. (Miksi?)

Joukko

E={recQ: |ful@)] </l ja [fa(z) = fm(2)] < [|fn = finllo kaikilla n,m € N}

on taysimittainen. (Miksi?)
Télloin kaikilla x € B

‘fn(x)_fm(x)‘ S an_me _>0, kun n,m— o0

eli (fu(x)) on Cauchy-jono K:ssa. Koska K on tédydellinen, on olemassa raja-arvo f(z) :=
lim,, o fn(2z). Koska

[ flloe < lim || fp]loe < M,
n—oo
on f € L*(9). Lisaksi
1f = fulloo < sup|f(x) — fu(x)] =sup lim |fin(z) — fulz)]
zelE rER M—00

< lim ||fm — full = 0, kun n — oo.
m—o0

Siten (L>(€2), ]| - ||o) on Banach-avaruus. O
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2.3. Banachin kiintopistelause. Muotoillaan ja todistetaan seuraavaksi Banachin kiintopis-
telause metrisissid avaruuksissa. (Kuratowskin upotuslauseen avulla miké tahansa metrinen ava-
ruus voidaan nidhdé jonkin Banach-avaruuden osajoukkona, joten versio Banach-avaruuksille
toki riittéisi.)

Madritelméa 2.31. Olkoot (X,d) metrinen avaruus ja Y C X epétyhja osajoukko. Kuvaus
f:Y — X on kontraktio Y :ssé, jos

d(f(x), f(y)) < d(x,y) kaikilla z,y € Y.

Kuvaus f: Y — X on aito kontraktio Y:ssé, jos on olemassa k € [0, 1) siten, etté
d(f(z), f(y)) < kd(z,y) kaikilla z,y € Y.

Pistettd = € Y sanotaan kuvauksen f:Y — X kiintopisteeksi, jos f(x) = x.

Lause 2.32 (Banachin kiintopistelause). Olkoot (X, d) tdydellinen (epdityhji) metrinen avaruus
ja f: X = X aito kontraktio. Tdlloin kuvauksella f on yksikdsitteinen kiintopiste v € X.

Todistus. (Harjoitustehtévé.) O

Esimerkki 2.33. Palataan jilleen Esimerkkiin 0.3. Osoitetaan Banachin kiintopistelauseen
avulla, ettéd integraaliyhtalolla

1
f@) - A [ K@ o)f()ds =), w1
0
on olemassa ratkaisu ainakin kun A on tarpeeksi pieni. Banachin kiintopistelauseen sovelta-

miseksi halutaan nahdé funktio f jonkin kontraktiokuvauksen kiintopisteend. Sopiva kuvaus
saadaan jarjestelemélld integraaliyht&lé muotoon

T: C([0,1]) = C([0,1]), (Tf)(x) =g(x)+ /\/O K(x,s)f(s)ds.

Esimerkissé 2.25 huomattiin, ettd kuvaus

(C([O,l}%ll-oc)—>(C([0,1]),||-||oo):f(éL’)H/O K{(x,s)f(s)ds

on jatkuva lineaarioperaattori. Néin ollen myds 7' on jatkuva || - ||-normissa. (Huomaa, ettéi
T ei ole lineaarinen ellei g = 0.)
Huomataan, ettéa

IT(f) = T(h)lloe = sup

z€[0,1]

g(z) + )x/o K(z,s)f(s)ds — g(z) — )\/0 K(z,s)h(s)ds

= sup < JANEsollf = Alfoo-

z€[0,1]

A / K (2. 5)(f(5) — h(s)) ds

Siten T on aito kontraktio jos |A|||K]|s < 1. Téssé tapauksessa integraaliyhtalolld on siis yk-
sikésitteinen ratkaisu f € C([0,1]). Kuten Banachin kiintopistelauscen todistuksessa huoma-
simme, yksi tapa 10ytdd tdméa ratkaisu numeerisesti on iteroida f,, = T'(f,—1) ldhtien jostain

fo-
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3. HILBERT-AVARUUDET

Masritelma 3.1. Olkoon F vektoriavaruus, jonka skalaarikunta on K, missd K on joko R tai
C. Kuvaus f: E x F — K on Hermiten muoto, jos

(S1) fz1+ 22,y) = f(z1,y) + f(22,y) kaikilla z1, 29,y € E

(S2) f(Az,y) = Af(x,y) kaikilla z,y € E ja A € K

(S3) f(y,z) = f(x,y) kaikilla z,y € E. (Téssd Z = a — ib on kompleksiluvun z = a + ib
konjugaattiluku. Tapauksessa z € K=Ron z = z.)

Huomaa, ettd Hermiten muodolle f ehtojen (S1) ja (S3) nojalla myos

f(aj?yl +y2) = f(yl + y27$) = f(ylax) + f(yg,l’) = f(xvyl) + f(xva)
ja ehtojen (S2) ja (S3) nojalla

kaikilla x,y,y1,72 € E ja A € K. Hermiten muoto f on siis konjugaattilineaarinen toisen
muuttujansa suhteen.
Ehdosta (S2) seuraa myos, ctti

f(0,y) =0f(0,y) = 0= f(x,0) kaikilla z,y € E.

Maéritelméa 3.2. Hermiten muoto f: F X E — K on sisdtulo avaruudessa F jos se on aidosti
positiivinen eli

f(z,x) >0 kaikilla r € E, ja f(z,x) =0 jos ja vain jos z = 0.
Sisatuloa f: F x E — K merkitdin usein
(zly) = flz.y), =zyek

Vektoriavaruuden sisdtulo méérittelee luonnollisen normin
]| = /().
Tamé& ndhdddn Cauchy-Schwarzin epayhtalon avulla.
Lause 3.3 (Cauchy-Schwarzin epiyhtild). Olkoon E sisituloavaruus. Tdlloin
(@) <[yl kaikilla 2,y € E.

Todistus. Jos x = 0, on viite selvisti totta. Oletetaan siis, ettd x # 0 ja vastaavasti y # 0.
Merkitéain A\ = _mluy?) ja arvioidaan

0< (x4 My lz+Xy) = (z]2) + My |2) + Az |y) + My | v)

(zly) (= |y) (@Y, e
= [J|* - (y]z) - (z|y) + 1]l
[ly[I? [ly[[? [ly[I*
— ||Z‘||2 o |($ | y)|2
Iyll*
josta viite seuraa. O

Lause 3.4. Olkoon (E,(-|-)) sisdtuloavaruus. Tdlloin ||xz|| = \/(x|y) on E:n normi.
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Todistus. Olkoon x,y € E. Nyt kompleksilukujen perusominaisuuksien, sisdtulon méaritelmén
ja Cauchy-Schwarzin epédyhtéalon nojalla

0<|lz+yll = (= +ylzt+y) =]+ (@]y) + (y|z) + [yl
= [zl + (@) + (= ]y) + llylI* = l|2]|* + 2Re(z | y) + ||y’
<|l2[* + 2/(z [ »)] + [lyl1* < [l + 2l|2] [ |y]] + ly[]?
= (Il + Ilyl])?,

eli kolmioepéyhtélé on voimassa.
Ehto (N2) on voimassa, silld kaikille z € E ja A € K on

IAz]] = V(A | Az) = \[ MA@ | 2) = VIAR[[|2 = [A] [|2]]-
Ehto (N3) seuraa siséitulon chdosta (z|z) =0 = z = 0. O

Maiaritelma 3.5. Taydellista sisdtuloavaruutta sanotaan Hilbert-avaruudeksi.

Esimerkkeji 3.6. (1) Avaruudessa K™ kuvaus

(z]y) = E:%% z= ()" jay = (y,)0y,

on sisatulo. Sen méarittelema normi on

]l = V(2| 2) = V/]ea? + Jwal? + - + Jaa]?

on avaruuden K" euklidinen normi.
(2) Kuten edellisess# esimerkissii, avaruudessa (2 médritelldén sisétulo

l‘|y Z$Jij T = (xj)?czl er jay = (yj)?il 662;

Koska Holderin epédyhtélon nojalla
lzgll < l2llllgllz = [lzllllylls < oo, kunz,y € £,

suppenee summa >, x;7; (jopa itseisesti) Kissa. Jilleen sisitulon méérittelemd normi on
téssd (% normi || - ||2. Koska % on Banach-avaruus, on ¢? varustettuna télld siséitulolla siten
Hilbert-avaruus.

(3) Vastaava sisdtulo avaruuteen L?(2) on

(flg) = /f ww),  foge L(Q).

TAmén antama normi on L?(Q):n ||-||o-normi. Koska (L?(Q), ||-||2) on tiydellinen, on (L*(2), (- |-))
Hilbert-avaruus.

Tutkitaan scuraavaksi sisdtuloavaruuksien ominaisuuksia.

Maaritelma 3.7. Sisdtuloavaruuden F vektorit x,y € E ovat kohtisuorat eli ortogonaaliset,
jos (z, |y) = 0. Ortogonaalisuutta merkitdén x L y. Joukot A, B C E ovat kohtisuorat (orto-

gonaaliset) jos x L y kaikilla z € A ja y € B. Talloin merkitdin A L B.
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Lause 3.8 (Pythagoras). Olkoot E sisituloavaruus ja {x1,2s,...,x,} C E siten, etti x; L x;

kun 5 # 1. Talloin
1) @l = il
i=1 i=1

Todistus. Todistetaan vaite induktiolla n:n suhteen. Viite on selvisti totta, kun n = 1. Olete-
taan, ettd viite on totta luvulla n > 1 ja osoitetaan, etti se patee myos luvulla n+ 1. Sisdtulon
lineaarisuuden ja induktio-oletuksen nojalla

n+1 n

n n
I P =11z + el = O i+ @uer | Y3+ T0s1)
i=1 i=1 i=1 i=1
n n n n
= (Z i | ZTz) + Z(an | i) + Z(Tz | Zni1) + (Fni1 | Tnir)
=1 =1 =1 =1

n n n
= (Z$i| Z%) + (@41 | Tnt1) = || inHQ + [z
i=1 i=1

i=1
n+1

n
= Ml P+ Nl =D [l
=1 i=1

U
Lause 3.9. Olkoon (E.|| - ||) normiavaruus. Tdlloin on olemassa sisitulo (-|-) joka indusoi
normin || - || jos ja vain jos || - || toteuttaa suunnikasyhtalon:
o+ yll* + [lo =yl = 2(1|=[]* + [lyl]*).
Todistus. Tarkistetaan ensin, etté sisdtulon antama normi toteuttaa suunnikasyht#lon:
lz +yl* +lz =yl = (@ +yla+y) + (@ —ylz—y)

= (o) + (@ly) + o)+ Wly) + @]2) = (¢]y) = W]z) + (y]y)

= 2(/[!I* + [lyI)-

Toinen suunta (tapauksessa K = R) todistetaan harjoituksissa. O
Esimerkkeji 3.10. (1) Osoitetaan, ettd (¢*, || -||;) ei ole sisiituloavaruus. Kiytetiin Lausetta
3.9. Olkoon = = (1,0,0,...),y = (0,1,0,0,...) € £*. Niille on

||I + y||1 = ||(17 17070a . )||1 = 27
||:U - y||1 = ||(17 _170707 s )Hl - 2)
2l = llyll, =1,
ja siten
o+l + 1z =yl = 2° + 27 = 8 £ 4 = 2(|[«[[f + [lyI[D).
Siten (£*, || - [|1) ei ole sisdtuloavaruus.
(2)Osoitetaan seuraavaksi, ettd (C([0,1]),]| - [|) €l ole sisdtuloavaruus. Kéytetdin jilleen

Lausetta 3.9. Olkoon f, ¢ € C([0,1]) kuvaukset f(t) =t ja g(t) =1 —t, kun ¢ € [0, 1]. T&lloin
1 lloo = Hlglloc = 1
ja koska (f +¢)(t) =1ja (f —g)(t) =2t — 1, on myds

1+ glle = [|f = 9llec = 1.
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Koska
1S +gll5 + 11 — gl = 2 # 4 = 2(I1f1I5 + llgll%),
ei (C([0,1]),]] - ||o) Ole sisdtuloavaruus.

Lause 3.11. Sisdtulo B x E — K: (z,y) — (z|y) on jatkuva kuvaus.

Todistus. Olkoon (zg,yy) € E x E. Talloin Cauchy-Schwarzin epdyhtélon ja kolmioepédyhtalon
nojalla

|(x|y) = (xo | yo)| = (& — 20|y — o) + (x — 20| y) + (z0 |y — y0)]
< ||z — o[ [ly — woll + llxo — || [|yol| + [|zoll Iy — wol|-

Masritelma 3.12. Jos A C E, niin joukon A ortokomplementti A+ on joukko

At ={y € E : (z|y) = 0 kaikilla x € A}.
Lause 3.13. Jos A C E, on sen ortokomplementti A% avaruuden E suljettu aliavaruus.
Todistus. Olkoon z,y € At ja «a, 8 € K. Tallsin

(z|lax + By) =a(z|z)+B(z|y) =0+0=0

kaikilla z € A, joten ax + By € A*, ja siten AL on avaruuden E aliavaruus.
Osoitetaan seuraavaksi, etti AL on suljettu. Jos z € E, on

vt o} =y e B - (s]y) = 0}
suljettu jatkuvan kuvauksen y — (z|y) alkukuvana suljetusta joukosta {0}. Néin ollen mieli-
valtaiselle A C E on joukko
At = ﬂ rt

€A
suljettu. O

Lause 3.14. Jos y1,y2 € E ja (x|y1) = (x| ya) kaikilla x € E, niin y; = yo.
Todistus. Koska y1 — y» € E, on oletuksen nojalla 0 = (y1 — ya[y1 — 42) = [[y1 — yo||?, joten
y1—y2 = 0. O

Tarkastellaan seuraavaksti normin minimointia Hilbert-avaruuksissa. Adrellisulotteisessa ava-
ruudessa suljetut ja rajoitetut joukot ovat kompakteja, joten niistéd 16ytyy joukossa normin mi-
nimoiva alkio. A#retonulotteisessa avaruudessa suljetut ja rajoitetu joukot eiviit ole aina kom-
pakteja, eikd minimin olemassaolo ei ole aina taattu.

Esimerkki 3.15. Olkoon e, = (0,...,0,1,0,...) € ¢2, missi jonon n:s termi on 1. M#ritelliin
n+2
A={z, = n - n €N}
{w n+ TR }

Tillsin A on rajoitettu ja suljettu, mutta ||z,||s = 2 > 1 kaikilla n € N ja ||z, |[; = 1, kun
n — 00, joten normin minimoivaa alkiota ei ole joukossa A.

Normin minimoivan alkion olemassaolo seuraa esimerkiksi joukon konveksisuudesta. Harjoi-
tuksissa 3 huomasimme jo, ettd vektoriavaruuden pallot ovat konvekseja. Palautetaan konvek-

sisuuden méaaritelméi mieleen.
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