
Hilbert Spaces 2026 (MATS2210)

Assignment 1

Solutions

Exercise 1.1

Let f, g ∈ C∞
c (Rn) and let λ ∈ R.

• C∞
c (Rn) is a Vector Space: The zero function f(x) = 0 for all x ∈ Rn is smooth and

it’s support is the empty set, which is compact. Thus, 0 ∈ C∞
c (Rn).

By using the fact that supp(f + g) ⊆ supp(f) ∪ supp(g) and supp(λf) = supp(f), we
coclude that it is closed under addition and scalar multiplication.

• (C∞
c (Rn), ∥ · ∥∞) is norm space: Verify the axioms of the norm:

(1) Non-negativity & Definiteness:

Since |f(x)| ≥ 0 for all x ∈ Rn, then maxx∈Rn |f(x)| ≥ 0.
Now, ∥0∥∞ = maxx∈Rn |0| = 0. Conversely, assume ∥f∥∞ = 0. Then:

max
x∈Rn

|f(x)| = 0.

This means that |f(x)| ≤ 0 for all x ∈ Rn. Also |f(x)| ≥ 0 for all x ∈ Rn.Therefore,
f(x) = 0 for all x ∈ Rn., so f = 0.

(2) Homogeneity:

∥λf∥∞ = max
x∈Rn

|λf(x)|

= max
x∈Rn

(|λ| · |f(x)|)

= |λ|max
x∈Rn

|f(x)|

= |λ|∥f∥∞.

(3) Triangle Inequality:

Using the triangle inequality of real numbers, we get

||f + g||∞ = max
x∈Rn

|f(x) + g(x)|
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≤ max
x∈Rn

(|f(x)|+ |g(x)|)

≤ max
x∈Rn

|f(x)|+max
x∈Rn

|g(x)|

= ||f ||∞ + ||g||∞

Therefore, ∥ · ∥∞ is a norm on C∞
c (Rn) and (C∞

c (Rn), ∥ · ∥∞) is a norm space.

Exercise 1.2

Consider f : Rn → Rn,

f(x) =


e
− 1

(1−∥x∥2) , ∥x∥ < 1,

0, ∥x∥ ≥ 1,

where ∥x∥ denotes the Euclidean norm in Rn.

• Compact support: By definition, f(x) = 0 for all ∥x∥ ≥ 1, hence

supp(f) ⊆ {x ∈ Rn : ∥x∥ < 1} = {x ∈ Rn : ∥x∥ ≤ 1},

which is a compact set. Therefore, f has compact support.

• Smoothness For ∥x∥ < 1: We have f(x) = e−1/(1−∥x∥2). Since the function x 7→ ∥x∥2
is smooth and the function t 7→ −1/(1 − t) is smooth for t < 1, their composition is
smooth. Hence, f is smooth.

• Smoothness at ∥x∥ = 1: Let r = ∥x∥. Then f(x) = e−1/(1−r2) for r < 1. As r → 1−,
f(x) → 0 faster than any polynomial in (1− r2). Moreover, for any k ≥ 0,

lim
r→1−

dk

drk
f(r) = 0.

Hence all partial derivatives of f of any order extend continuously to 0 for ∥x∥ ≥ 1.
Therefore, f ∈ C∞(Rn).

Now, define fj(x) =
f(jx)

j
. For this, we have

∥fj∥∞ = max
x∈Rn

|fj(x)| = max
x∈Rn

1

j
|f(jx)| = M

1

j
→ 0 as j → ∞

where M = maxx∈Rn |f(jx)| = maxx∈Rn |f(x)| > 0.

On the other hand by the chain rule,

Dfj(x) = Df(jx),
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so that
∥Dfj∥∞ = max

x∈Rn
|Dfj(x)| = max

x∈Rn
|Df(jx)| = max

x∈Rn
|Df(x)| =: M∗ > 0,

independent of j. Thus,
∥Dfj∥∞ ̸→ 0 as j → ∞

Therefore, D is not continuous.

Exercise 1.3

Verify the axioms of metric space:

(1) Non-negativity & Definiteness:
Since ∥ · ∥ is a norm, we have ∥x− y∥ ≥ 0 for all x, y ∈ E. Hence, d(x, y) ≥ 0.

Also,
d(x, y) = ∥x− y∥ = 0 ⇐⇒ x− y = 0 ⇐⇒ x = y.

.

(2) Symmetry:

d(x, y) = ∥x− y∥ = ∥ − (y − x)∥ = ∥y − x∥ = d(y, x)

for all x, y ∈ E.

(3) Triangle Inequality:
Using the triangle inequality of norm, we get

d(x, z) = ∥x− z∥ = ∥(x− y) + (y − z)∥ ≤ ∥x− y∥+ ∥y − z∥ = d(x, y) + d(y, z)

for all x, y, z ∈ E.

Hence, d(x, y) = ∥x− y∥ defines a metric on E.

Exercise 1.4

Let x, y ∈ E. Using the triangle inequality for a norm, we have

∥x∥ = ∥(x− y) + y∥ ≤ ∥x− y∥+ ∥y∥,

which implies
∥x∥ − ∥y∥ ≤ ∥x− y∥.

Similarly, swapping x and y, we get

∥y∥ − ∥x∥ ≤ ∥x− y∥.
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Combining the two inequalities, we obtain

−∥x− y∥ ≤ ∥x∥ − ∥y∥ ≤ ∥x− y∥,

or equivalently,
|∥x∥ − ∥y∥| ≤ ∥x− y∥.
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