

Hilbert Spaces 2026 (MATS2210)

Assignment 1

Solutions

Exercise 1.1

Let $f, g \in C_c^\infty(\mathbb{R}^n)$ and let $\lambda \in \mathbb{R}$.

- **$C_c^\infty(\mathbb{R}^n)$ is a Vector Space:** The zero function $f(x) = 0$ for all $x \in \mathbb{R}^n$ is smooth and its support is the empty set, which is compact. Thus, $0 \in C_c^\infty(\mathbb{R}^n)$.
By using the fact that $\text{supp}(f + g) \subseteq \text{supp}(f) \cup \text{supp}(g)$ and $\text{supp}(\lambda f) = \text{supp}(f)$, we conclude that it is closed under addition and scalar multiplication.
- **$(C_c^\infty(\mathbb{R}^n), \|\cdot\|_\infty)$ is norm space:** Verify the axioms of the norm:

(1) Non-negativity & Definiteness:

Since $|f(x)| \geq 0$ for all $x \in \mathbb{R}^n$, then $\max_{x \in \mathbb{R}^n} |f(x)| \geq 0$.

Now, $\|0\|_\infty = \max_{x \in \mathbb{R}^n} |0| = 0$. Conversely, assume $\|f\|_\infty = 0$. Then:

$$\max_{x \in \mathbb{R}^n} |f(x)| = 0.$$

This means that $|f(x)| \leq 0$ for all $x \in \mathbb{R}^n$. Also $|f(x)| \geq 0$ for all $x \in \mathbb{R}^n$. Therefore, $f(x) = 0$ for all $x \in \mathbb{R}^n$, so $f = 0$.

(2) Homogeneity:

$$\begin{aligned}\|\lambda f\|_\infty &= \max_{x \in \mathbb{R}^n} |\lambda f(x)| \\ &= \max_{x \in \mathbb{R}^n} (|\lambda| \cdot |f(x)|) \\ &= |\lambda| \max_{x \in \mathbb{R}^n} |f(x)| \\ &= |\lambda| \|f\|_\infty.\end{aligned}$$

(3) Triangle Inequality:

Using the triangle inequality of real numbers, we get

$$\|f + g\|_\infty = \max_{x \in \mathbb{R}^n} |f(x) + g(x)|$$

$$\begin{aligned}
&\leq \max_{x \in \mathbb{R}^n} (|f(x)| + |g(x)|) \\
&\leq \max_{x \in \mathbb{R}^n} |f(x)| + \max_{x \in \mathbb{R}^n} |g(x)| \\
&= \|f\|_\infty + \|g\|_\infty
\end{aligned}$$

Therefore, $\|\cdot\|_\infty$ is a norm on $C_c^\infty(\mathbb{R}^n)$ and $(C_c^\infty(\mathbb{R}^n), \|\cdot\|_\infty)$ is a norm space.

Exercise 1.2

Consider $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$,

$$f(x) = \begin{cases} e^{-\frac{1}{(1-\|x\|^2)}}, & \|x\| < 1, \\ 0, & \|x\| \geq 1, \end{cases}$$

where $\|x\|$ denotes the Euclidean norm in \mathbb{R}^n .

- **Compact support:** By definition, $f(x) = 0$ for all $\|x\| \geq 1$, hence

$$\text{supp}(f) \subseteq \overline{\{x \in \mathbb{R}^n : \|x\| < 1\}} = \{x \in \mathbb{R}^n : \|x\| \leq 1\},$$

which is a compact set. Therefore, f has compact support.

- **Smoothness For $\|x\| < 1$:** We have $f(x) = e^{-1/(1-\|x\|^2)}$. Since the function $x \mapsto \|x\|^2$ is smooth and the function $t \mapsto -1/(1-t)$ is smooth for $t < 1$, their composition is smooth. Hence, f is smooth.
- **Smoothness at $\|x\| = 1$:** Let $r = \|x\|$. Then $f(x) = e^{-1/(1-r^2)}$ for $r < 1$. As $r \rightarrow 1^-$, $f(x) \rightarrow 0$ faster than any polynomial in $(1-r^2)$. Moreover, for any $k \geq 0$,

$$\lim_{r \rightarrow 1^-} \frac{d^k}{dr^k} f(r) = 0.$$

Hence all partial derivatives of f of any order extend continuously to 0 for $\|x\| \geq 1$. Therefore, $f \in C^\infty(\mathbb{R}^n)$.

Now, define $f_j(x) = \frac{f(jx)}{j}$. For this, we have

$$\|f_j\|_\infty = \max_{x \in \mathbb{R}^n} |f_j(x)| = \max_{x \in \mathbb{R}^n} \frac{1}{j} |f(jx)| = M \frac{1}{j} \rightarrow 0 \quad \text{as } j \rightarrow \infty$$

where $M = \max_{x \in \mathbb{R}^n} |f(jx)| = \max_{x \in \mathbb{R}^n} |f(x)| > 0$.

On the other hand by the chain rule,

$$Df_j(x) = Df(jx),$$

so that

$$\|Df_j\|_\infty = \max_{x \in \mathbb{R}^n} |Df_j(x)| = \max_{x \in \mathbb{R}^n} |Df(jx)| = \max_{x \in \mathbb{R}^n} |Df(x)| =: M^* > 0,$$

independent of j . Thus,

$$\|Df_j\|_\infty \not\rightarrow 0 \quad \text{as } j \rightarrow \infty$$

Therefore, D is not continuous.

Exercise 1.3

Verify the axioms of metric space:

(1) Non-negativity & Definiteness:

Since $\|\cdot\|$ is a norm, we have $\|x - y\| \geq 0$ for all $x, y \in E$. Hence, $d(x, y) \geq 0$.

Also,

$$d(x, y) = \|x - y\| = 0 \iff x - y = 0 \iff x = y.$$

(2) Symmetry:

$$d(x, y) = \|x - y\| = \|-(y - x)\| = \|y - x\| = d(y, x)$$

for all $x, y \in E$.

(3) Triangle Inequality:

Using the triangle inequality of norm, we get

$$d(x, z) = \|x - z\| = \|(x - y) + (y - z)\| \leq \|x - y\| + \|y - z\| = d(x, y) + d(y, z)$$

for all $x, y, z \in E$.

Hence, $d(x, y) = \|x - y\|$ defines a metric on E .

Exercise 1.4

Let $x, y \in E$. Using the triangle inequality for a norm, we have

$$\|x\| = \|(x - y) + y\| \leq \|x - y\| + \|y\|,$$

which implies

$$\|x\| - \|y\| \leq \|x - y\|.$$

Similarly, swapping x and y , we get

$$\|y\| - \|x\| \leq \|x - y\|.$$

Combining the two inequalities, we obtain

$$-\|x - y\| \leq \|x\| - \|y\| \leq \|x - y\|,$$

or equivalently,

$$|\|x\| - \|y\|| \leq \|x - y\|.$$