
Esimerkki 2.8. Normiavaruus (ℓ∞, || · ||∞) ei ole separoituva. Tämä nähdään ottamalla ylinu-
meroituva joukko (muista, että joukon potenssijoukko on aina mahtavampi kuin joukko itse)

F = {χA : A ⊂ N} ⊂ ℓ∞,

missä

χA(x) =

{
1, jos x ∈ A

0, jos x /∈ A
.

Jokaiselle A,B ⊂ N on ||χA − χB||∞ = 1 jos A ̸= B. Siispä {B(f, 1/2)}f∈F on ylinumeroitu-
va kokoelma pistevieraita avoimia joukkoja ℓ∞:ssä ja siten ℓ∞ ei ole separoituva Lauseen 1.3
nojalla.

Lisäksi ääretönulotteisissa normiavaruuksissa avoimet ja suljetut joukot voivat olla joskus
ensinäkemältä yllättäviä verrattuna Euklidisiin avaruuksiin.

Esimerkki 2.9. Olkoon

A = {(xn)∞n=1 ∈ c0 : |xn| <
1

n
kaikilla n ∈ N}.

Tällöin A ei ole avoin avaruudessa (c0, || · ||∞).
Esimerkiksi 0̄ = (0, 0, . . . ) ∈ A, mutta kaikilla r > 0 on olemassa m ∈ N siten, että 1

n
< r, ja

tällöin jolle (xn)
∞
n=1, jossa xn = 1

n
, jos n = m ja xn = 0 muuten, pätee (xn)

∞
n=1 ∈ B(0̄, r) \ A.

Siten 0̄ ei ole A:n sisäpiste eikä A ole avoin.

Normiavaruus (E, ||·||) on täydellinen, jos (E, ||·||) on täydellinen metrinen avaruus. Täydellistä
normiavaruutta kutsutaan Banach-avaruudeksi.

Lause 2.10. Jokainen normiavaruus (E, || · ||1) voidaan täydellistää, eli on olemassa Banach-
avaruus (Ē, || · ||2) siten, että E on tiheä avaruudessa (Ē, || · ||2) ja ||x||1 = ||x||2 kaikilla x ∈ E.

Todistus. (Harjoitustehtävä, vertaa Lauseeseen 1.2.) □

Lause 2.11. Avaruus (ℓp, ∥ · ∥p) on Banach-avaruus kaikilla p ∈ [1,∞].

Todistus. Todistus p:n äärellisille arvoille nähdään myöhemmin Lp-avaruuksien tapauksessa.
Seuraavassa lauseessa nähdään tapaus p = ∞ yleisemmässä kontekstissa. □

Lause 2.12. (B(A,K), || · ||∞) on Banach-avaruus.

Todistus. Olkoot (xn) Cauchy-jono avaruudessa (B(A,K), || · ||∞), ϵ > 0 ja t ∈ A. Koska on
olemassa nϵ ∈ N siten, että

|xk(t)− xm(t)| ≤ ||xk − xm||∞ < ϵ kaikilla k,m ≥ nϵ

on (xk(t))
∞
k=1 Cauchy-jono avaruudessaK. KoskaK on täydellinen, on olemassa x(t) := limn→∞ xn(t) ∈

K.
Todistaaksemme lauseen väite, tulee nyt osoittaa, että

(1) x ∈ (B(A,K), || · ||∞) ja
(2) xn → x kun n→ ∞ avaruudessa (B(A,K), || · ||∞).

Olkoot ϵ > 0 ja nϵ ∈ N kuten yllä. Kun m ≥ nϵ, saadaan

||xm − x||∞ = sup
t∈A

|xm(t)− x(t)| ≤ sup
t∈A

lim
k→∞

|xm(t)− xk(t)| ≤ ϵ,

8



joten ||xm − x||∞ → 0 kun m → ∞ eli kohta (2) on todistettu. Toisaalta tästä seuraa myös
kohta (1):

||x||∞ ≤ ||xnϵ||∞ + ||xnϵ − x||∞ ≤ ||xnϵ||∞ + ϵ <∞.

□

Lause 2.13. Olkoon E Banach-avaruus. Tällöin aliavaruus F ⊂ E on täydellinen E:n indusoi-
massa normissa jos ja vain jos F on suljettu E:ssä.

Todistus. (Harjoitustehtävä) □

Määritelmä 2.14. Vektoriavaruuden E normit ||·||1 ja ||·||2 ovat ekvivalentteja, jos on olemassa
vakio C > 0, jolle

1

C
||x||1 ≤ ||x||2 ≤ C ||x||1 kaikille x ∈ E.

Lause 2.15. Olkoot ||·||1 ja ||·||2 ekvivalentteja normeja avaruudessa E. Tällöin ne määrittelevät
saman topologian avaruuteen E.

Todistus. (Harjoitustehtävä) □

Esimerkkejä 2.16. (1) Avaruuden Cn normit

||x||2 =

√√√√ n∑
j=1

|xj|2 ja ||x||∞ = max
j

|xj|,

missä x = (x1, x2, . . . , xn) ∈ Cn, ovat ekvivalentit:

||x||∞ ≤ ||x2|| ≤
√
n||x||∞.

Myöhemmin huomataan, että kaikki äärellisulotteisen vektoriavaruuden normit ovat ekviva-
lentteja.

(2) Olkoon

P =

{
p(z) =

n∑
k=0

akz
k : a0, . . . , an ∈ C, n ∈ N ∪ {0}

}
.

Tällöin esimerkiksi

||p||1 =
n∑

k=0

|ak| ja ||p||∞ = max
k

|ak|,

missä p(z) =
∑n

k=0 akz
k, ovat normeja avaruudessa P . Ne eivät kuitenkaan ole ekvivalentit: jos

pn(z) =
∑n

k=0 z
k, on ||pn||1 = n+ 1 ja ||pn||∞ = 1.

(3) Olkoon

Ck([0, 1]) = {f : [0, 1] → K : f, f ′, . . . , f (k) ovat jatkuvia välillä [0, 1]},

kun k ∈ N. Normit

||f ||∞ = sup
0≤j≤k

||f (j)||∞ ja ||f ||1 =
k∑

j=0

||f (j)||∞

ovat ekvivalentteja avaruudessa Ck([0, 1]).
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Olkoon (xn) normiavaruuden E jono. Jonosta (xn) voidaan muodostaa sarja

S =
∞∑
n=1

xn.

Sanomme, että sarja S suppenee alkioon x ∈ E, jos

x = lim
m→∞

m∑
n=1

xn E:ssä.

Sanomme, että S suppenee itseisesti, jos

∞∑
n=1

||xn|| <∞.

Esimerkki 2.17. Olkoon en = (0, 0, . . . , 0, 1︸︷︷︸
n:s

, 0 . . . ) ∈ ℓ2 kaikille n ∈ N. Suppeneeko sarja

∞∑
n=1

en
n
?

Entä suppeneeko se itseisesti?
Merkitään

x =

(
1,

1

2
,
1

3
, . . .

)
.

Koska

||x||2 =

√√√√ ∞∑
n=1

1

n2
(=

π√
6
) <∞,

on x ∈ ℓ2.
Tarkastellaan osasummia

sm =
m∑

n=1

en
n

=

(
1,

1

2
,
1

3
, . . . ,

1

m
, 0, 0, . . .

)
.

Nyt

||x− sm||2 =

√√√√ ∞∑
n=m+1

1

n2
→ 0, kun m→ ∞,

joten sarja suppenee. Kuitenkin

∞∑
n=1

∣∣∣∣∣∣en
n

∣∣∣∣∣∣
2
=

∞∑
n=1

1

n
= ∞,

joten sarja ei suppene itseisesti.

Lause 2.18. Normiavaruus E on Banach-avaruus jos ja vain jos sen jokainen itseisesti sup-
peneva sarja suppenee.

10



Todistus. Oletetaan ensin, että E on täydellinen, ja (xn) on jono jonka muodostama sarja
suppenee itseisesti E:ssä. Merkitään Sm =

∑m
n=1 xn. Nyt, kun k ≥ m ≥ 1, on kolmioepäyhtälön

ja itseisen suppenemisen nojalla

||Sk − Sm|| ≤
k∑

n=m

||xn|| ≤
∞∑

n=m

||xn|| → 0, kun m→ ∞.

Siis Sm on Cauchy-jono, joka suppenee täydellisyyden nojalla.
Oletetaan sitten, että jokainen E:n itseisesti suppeneva sarja suppenee. Olkoon (xn) Cauchy-

jono E:ssä. Valitaan jokaiselle k ∈ N indeksi nk ∈ N siten, että

||xn − xm|| < 2−k kaikille n,m ≥ mk.

Merkitään yk := xnk
. Koska

yk = y1 + (y2 − y1) + (y3 − y2) + · · ·+ (yk − yk−1),

ja koska
∞∑
k=1

||yk+1 − yk|| <
∞∑
k=1

2−k <∞,

jono

(yn − y1) =
n−1∑
k=1

(yk+1 − yk)

suppenee oletuksen nojalla. Koska löysimme Cauchy-jonolle (xn) suppenevan osajonon (yn),
suppenee alkuperäinen jono (xn) (Harjoitustehtävä) ja siten E on täydellinen. □

2.1. Lineaariset operaattorit. Olkoot E ja F K-kertoimisia vektoriavaruuksia. Kuvaus T : E →
F on lineaarinen jos

T (αx+ βy) = αT (x) + βT (y) kaikilla x, y ∈ E ja α, β ∈ K.
Kuvausta T sanotaan tällöin usein lineaariseksi operaattoriksi ja merkitään lyhyesti Tx :=
T (x).

Jo Esimerkissä 0.1 huomasimme, että lineaariset operaattorit eivät aina ole jatkuvia. Tulem-
me kohta liittämään jatkuvuuden rajoitettuihin lineaarisiin operaattoreiin.

Määritelmä 2.19. Olkoot E ja F normiavaruuksia ja T : E → F lineaarinen. Sanomme, että
T on rajoitettu, jos on olemassa vakio C <∞ jolle

∥Tx∥F ≤ C∥x∥E kaikilla x ∈ E.

Esimerkki 2.20. Olkoon T : ℓ2 → ℓ2 : (xk)
∞
k=1 7→ (3xk+1)

∞
k=1. Tällöin T on lineaarinen ja

rajoitettu:

||Tx||2 =

(
∞∑
k=1

|3xk+1|2
) 1

2

= 3

(
∞∑
k=1

|xk+1|2
) 1

2

≤ 3

(
∞∑
k=1

|xk|2
) 1

2

= 3||x||2.

Määritelmä 2.21. Olkoot E ja F normiavaruuksia ja T : E → F lineaarinen operaattori.
Operaattorin T normi on

∥T∥ := ∥T∥E→F := sup{∥Tx∥F : x ∈ E, ∥x∥E ≤ 1} ∈ [0,∞].

Kyseessä on todella lineaarisen operaattorin normi mikäli ∥T∥ <∞.
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Lemma 2.22. Lineaarinen operaattori T : E → F on rajoitettu jos ja vain jos sen normi on
äärellinen.

Todistus. Jos T on rajoitettu, on olemassa vakio C <∞ siten, että

||Tx||F ≤ C||x||E kaikilla x ∈ T.

Erityisesti ||T || ≤ C eli T :n normi on äärellinen.

Oletetaan kääntäen, että ||T || < ∞. Koska
∣∣∣∣∣∣ x

||x||E

∣∣∣∣∣∣
E

= 1 jokaisella x ∈ E, x ̸= 0̄, on

lineaarisuuden nojalla

||Tx||F
||x||E

=

∣∣∣∣∣∣∣∣T x

||x||E

∣∣∣∣∣∣∣∣
F

≤ ||T || kaikilla x ∈ E.

Tästä saamme arvion

||Tx||F ≤ ||T ||||x||E
jokaisella x ∈ E, eli T on rajoitettu. □

Esimerkki 2.23. Olkoon T : ℓ2 → ℓ1 : (xk)
∞
k=1 7→ ( 1

k
xk)

∞
k=1. Onko T rajoitettu? Hölderin

epäyhtälöllä nähdään, että

||Tx||1 =
∞∑
k=1

1

k
|xk| ≤

(
∞∑
k=1

1

k2

)1/2( ∞∑
k=1

|xk|2
)1/2

=
√
π2/6||x||2.

Siten T on rajoitettu lineaarinen operaattori avaruudesta ℓ2 avaruuteen ℓ1 ja ||T || ≤
√
π2/6.

Lause 2.24. Olkoot E ja F normiavaruuksia ja T : E → F lineaarikuvaus. Tällöin seuraavat
ehdot ovat yhtäpitäviä:

(i) T on rajoitettu operaattori.
(ii) T on jatkuva E:ssä.
(iii) T on jakuva yhdessä pisteessä x0 ∈ E.

Todistus. Osoitetaan, että (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii): jos x, y ∈ E ja ϵ > 0, niin

||Tx− Ty||F = ||T (x− y)||F ≤ ||T || · ||x− y||E < ϵ kun ||x− y||E <
ϵ

||T ||
eli T on jatkuva E:ssä.

(ii) ⇒ (iii): triviaalisti.
(iii) ⇒ (i): Olkoon T jatkuva pisteessä x0 ja ϵ > 0. Jatkuvuuden nojalla on olemassa δ > 0

siten, että

||x− x0||E ≤ δ ⇒ ||Tx− Tx0||F < ϵ.

Olkoon nyt x ∈ E jolle ||x||E ≤ δ. Tällöin lineaarisuuden nojalla

||Tx||F = ||T (x+ x0)− Tx0||F < ϵ.

Toisaalta, jos x ∈ E ja ||x||E ≤ 1, on ||δx||E = δ||x||E ≤ δ ja siten

δ||Tx||F = ||T (δx)||F < ϵ, eli ||Tx||F <
ϵ

δ
.

Niinpä ||T || ≤ ϵ
δ
ja T on rajoitettu. □
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Esimerkki 2.25. Palataan Esimerkkiin 0.3. Olkoon siis K : [0, 1]× [0, 1] → R jatkuva. Väite:
jos määritellään jokaiselle f ∈ C([0, 1])

(Tf)(x) =

∫ 1

0

K(x, s)f(s) ds, x ∈ [0, 1]

saadaan jatkuva lineaarinen operaattori T : (C([0, 1]), || · ||∞) → (C([0, 1]), || · ||∞).
Tulee siis tarkistaa, että T :n arvot ovat C([0, 1]):ssä, että T on lineaarinen ja että T on

rajoitettu.
Koska K on jatkuva, on se tasaisesti jatkuva kompaktissa joukossa [0, 1]2. Olkoon ϵ > 0. On

siis olemassa δ > 0 siten, että

|x− y| = ||(x, s)− (y, s)||2 < δ ⇒ |K(x, s)−K(x, s)| < ϵ kaikilla x, y, s ∈ [0, 1].

Siten jos |x− y| < δ ja f ∈ C([0, 1]) on myös

|(Tf)(x)− (Tf)(y)| =
∣∣∣∣∫ 1

0

K(x, s)f(s) ds−
∫ 1

0

K(y, s)f(s) ds

∣∣∣∣
≤
∫ 1

0

|K(x, s)−K(y, s)||f(s)| ds ≤ ϵ

∫ 1

0

|f(s)| ds ≤ ϵ||f ||∞

eli Tf ∈ C([0, 1]).
Integraalin lineaarisuuden nojalla T on selvästikin lineaarinen.
Tarkistetaan vielä, että T on rajoitettu. Koska K on jatkuva kuvaus kompaktilla joukolla, on

se rajoitettu eli on olemassa M < ∞ siten, että |K(x, s)| ≤ M kaikilla (x, s) ∈ [0, 1]2. Olkoon
nyt f ∈ C([0, 1]). Tällöin

||Tf ||∞ = sup
x∈[0,1]

|(Tf)(x)| ≤ sup
x∈[0,1]

∫ 1

0

|K(x, s)||f(s)| ds ≤M ||f ||∞,

joten ||T || ≤M ja T on rajoitettu.

2.2. Lp-avaruudet. Olkoon 1 ≤ p < ∞, Ω ⊂ Rn Lebesgue-mitallinen joukko ja µ Lebesguen
mitta Rn:ssä. Määritellään kaikille mitallisille f : Ω → K kuvaus

||f ||p :=
(∫

Ω

|f(x)|p dµ(x)
)1/p

.

Tätä käyttäen määritellään normiavaruus (Lp, || · ||p). Mitallisten funktioiden joukossa, missä
|| · || on äärellistä, on kuvaus || · ||p kuitenkin vain seminormi, sillä integraalin arvo ei muutu
muutettaessa funktiota nollamittaisessa joukossa. siksi määrittelemme

Lp(Ω) = {f : Ω → K : f mitallinen ja ||f ||p <∞} / ∼,
missä f ∼ g jos ja vain jos f(x) = g(x) melkein kaikilla x ∈ Ω. Usein merkitsemme f ∈ Lp

emmekä [f ] ∈ Lp, jolloin ymmärretään että otamme [f ]:n jonkin edustajan.
Jotta näin määritelty avaruus (Lp(Ω), || · ||p) olisi normiavaruus, tulee todistaa, että || · ||p on

seminormi ennen tekijäavaruuteen siirtymistä. Kolmioepäyhtälö on ehdoista ainoa joka vaatii
pidemmän todistuksen.

Luvut p, q ∈ R ovat duaalieksponentit jos p > 1, q > 1 ja ne toteuttavat yhtälön

1

p
+

1

q
= 1.

Todistetaan ensin Hölderin epäyhtälö, joka perinteisesti todistetaan seuraavaa lemmaa käyttäen.
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Lemma 2.26. Olkoot p ja q duaalieksponentit, a ≥ 0 ja b ≥ 0. Tällöin

(2.1) ab ≤ ap

p
+
bq

q
.

Todistus. Jos a = 0 tai b = 0 on (2.1) selväti totta. Oletetaan siis, että a, b > 0. Määritellään

φ(t) =
tp

p
+
t−q

q
, t > 0.

Tällöin

φ′(t) = tp−1 − t−q−1 =
tp+q − 1

tq+1
,

joten φ′(t) < 0, kun 0 < t < 1 ja φ′(t) > 0, kun t > 1. Funktion φ minimi on siis pisteessä
t = 1 ja siten

1 =
1

p
+

1

q
= φ(1) ≤ φ(a1/qb−1/p) =

ap/qb−1

p
+
a−1bq/p

q

eli

ab ≤ ap/q+1

p
+
bq/p+1

q
=
ap

p
+
bq

q
.

□

Lause 2.27 (Hölderin epäyhtälö). Olkoon p ja q duaalieksponentit ja f, g : Ω → K mitalliset
funktiot joille ||f ||p <∞ ja ||g||q <∞. Tällöin

||fg||1 ≤ ||f ||p||g||q.

Todistus. Jos ||f ||p = 0, on f(x) = 0 m.k. x ∈ Ω ja tällöin myös fg(x) = 0 m.k. x ∈ Ω ja
epäyhtälö on triviaalisti totta. Samoin jos ||g||q = 0. Voimme siis olettaa, että ||f ||p, ||g||q > 0.
Käytetään Lemmaa 2.26 kaikille x ∈ Ω valitsemalla

a =
|f(x)|
||f ||p

ja b =
|g(x)|
||g||q

,

jolloin saadaan epäyhtälö

|f(x)||g(x)|
||f ||p||g||q

≤ |f(x)|p

p||f ||pp
+

|g(x)|q

q||g||qq
, kaikilla x ∈ Ω.

Tästä saadaan integroimalla

||f ||−1
p ||g||−1

q

∫
Ω

|fg| dµ ≤ 1

p
||f ||−p

p

∫
Ω

|f |p dµ+
1

q
||g||−q

q

∫
Ω

|g|q dµ =
1

p
+

1

q
= 1.

□

Hölderin epäyhtälöllä saadaan todistettua Minkowskin epäyhtälö.

Lause 2.28 (Minkowskin epäyhtälö). Olkoot 1 ≤ p < ∞ ja f, g : Ω → K mitallisia funktioita.
Tällöin

||f + g||p ≤ ||f ||p + ||g||p.
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Todistus. Tapaus p = 1 on helppo, joten oletetaan, että p > 1. Voidaan olettaa, että ||f+g||p >
0. Olkoon 1 < q < ∞ siten, että p ja q ovat duaalieksponentit. Hölderin epäyhtälön ja K:n
kolmioepäyhtälön nojalla∫

Ω

|f + g|p dµ =

∫
Ω

|f + g|p−1|f + g| dµ ≤
∫
Ω

|f + g|p−1|f | dµ+

∫
Ω

|f + g|p−1|g| dµ

≤ ∥f∥p
(∫

Ω

|f + g|q(p−1) dµ

) 1
q

+ ∥g∥p
(∫

Ω

|f + g|q(p−1) dµ

) 1
q

= (∥f∥p + ∥f∥q)
(∫

Ω

|f + g|p) dµ
) 1

q

.

Tästä seuraa haluttu epäyhtälö jakamalla puolittain luvulla
(∫

Ω
|f + g|p) dµ

) 1
q > 0. Tämä on

mahdollista, sillä (∫
Ω

|f + g|p) dµ
) 1

q

≤ 2
p
q (∥f∥pp + ∥g∥pp)

1
q <∞.

□

Lause 2.29. Olkoon 1 ≤ p <∞ ja Ω ⊂ Rn mitallinen. Tällöin (Lp, || · ||p) on Banach-avaruus.

Todistus. Integraalin lineaarisuuden ja Minkowskin epäyhtälön avulla helposti nähdään, että
(Lp, || · ||p) on normiavaruus. Todistettavana siis lähinnä täydellisyys.

Olkoon
∑

n fn itseisesti suppeneva sarja avaruudessa L
p, eliM =

∑
n ||fn||p <∞. Tavoitteena

on löytää f ∈ Lp siten, että

lim
k→∞

∣∣∣∣∣
∣∣∣∣∣

k∑
n=1

fn − f

∣∣∣∣∣
∣∣∣∣∣
p

= 0.

Merkitään

gk(x) =
k∑

n=1

|fn(x)|, kaikilla x ∈ Ω,

jolloin Minkowskin epäyhtälön nojalla

||gk||p ≤
k∑

n=1

||fn||p ≤M, kaikilla k ∈ N.

Monotonisen konvergenssin nojalla∫
Ω

(
∞∑
n=1

|fn|

)p

dµ = lim
k→∞

∫
Ω

(
k∑

n=1

|fn|

)p

dµ = lim
k→∞

||gk||pp ≤Mp <∞,

joten

g :=
∞∑
n=1

|fn| ∈ Lp.

Siten g(x) <∞ melkein kaikilla x ∈ Ω ja näillä x sarja

f(x) :=
∞∑
n=1

fn(x)
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