Esimerkki 2.8. Normiavaruus (¢, || ||~) €l ole separoituva. Tdméa nédhdéén ottamalla ylinu-
meroituva joukko (muista, ettd joukon potenssijoukko on aina mahtavampi kuin joukko itse)

F={xa:ACN}C/,

(2) = 1, josze A
A4S = 0, josz¢ A’

Jokaiselle A, B C N on ||xa — x8l|lc = 1 jos A # B. Siispd {B(f,1/2)}ser on ylinumeroitu-
va kokoelma pistevieraita avoimia joukkoja £*°:ssé ja siten > ei ole separoituva Lauseen 1.3
nojalla.

misséa

Lisdksi adretonulotteisissa normiavaruuksissa avoimet ja suljetut joukot voivat olla joskus
ensindkemaltd yllattavia verrattuna Fuklidisiin avaruuksiin.

Esimerkki 2.9. Olkoon
1
A={(zn)2, €y |z < - kaikilla n € N}.

Tallsin A ei ole avoin avaruudessa (co, ||« |]oo)-

Esimerkiksi 0 = (0,0,...) € A, mutta kaikilla 7 > 0 on olemassa m € N siten, etti % <r,ja
talloin jolle (z,)9%,, jossa z, = %, jos n = m ja z, = 0 muuten, pitee (z,)°, € B(0,r) \ A.
Siten 0 ei ole A:n sisépiste eiké A ole avoin.

Normiavaruus (F, ||-||) on tdydellinen, jos (E, ||-||) on tdydellinen metrinen avaruus. Téydellista
normiavaruutta kutsutaan Banach-avaruudeksi.

Lause 2.10. Jokainen normiavaruus (I, || - |[1) voidaan taydellistid, eli on olemassa Banach-
avaruus (E, || -||2) siten, ettd E on tihed avaruudessa (E,||-|]2) ja ||z|]1 = ||z||2 kaikilla x € E.
Todistus. (Harjoitustehtdvé, vertaa Lauseeseen 1.2.) O
Lause 2.11. Avaruus (¢*,] - ||,) on Banach-avaruus kaikilla p € [1, 00].

Todistus. Todistus p:n &érellisille arvoille ndhdéddn myohemmin LP-avaruuksien tapauksessa.
Seuraavassa lauseessa nahdéian tapaus p = oo yleisemmaéssé kontekstissa. ([l

Lause 2.12. (B(A,K), || ||e) on Banach-avaruus.
Todistus. Olkoot (z,,) Cauchy-jono avaruudessa (B(A,K),|| - ||«), € > 0 ja t € A. Koska on

olemassa n. € N siten, etta

|2 () — 2 (B)| < |2k — ZTim|oo < € kaikilla k,m > n.

on (zx(t))72; Cauchy-jono avaruudessa K. Koska K on tdydellinen, on olemassa x(t) := lim,,_, ,(t) €
K.
Todistaaksemme lauseen viite, tulee nyt osoittaa, etta

(2) z, = x kun n — oo avaruudessa (B(A,K), || - |]o0)-
Olkoot € > 0 ja n. € N kuten ylld. Kun m > n., saadaan
||Zm — @||oo = sup |z, (t) — 2(t)] < sup lim |x,,(t) — zx(t)] <€,
teA teA k—oo
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joten ||z, — || — 0 kun m — oo eli kohta (2) on todistettu. Toisaalta téstd seuraa myos
kohta (1):

12]loe < [2nlloo + (|70 = 2lloo < [|n|loc + € < o0.

O

Lause 2.13. Olkoon E Banach-avaruus. Talloin aliavaruus F C E on taydellinen E :n indusoi-
massa normissa jos ja vain jos F' on suljettu E:ssd.

Todistus. (Harjoitustehtava) O

Maésritelmé 2.14. Vektoriavaruuden E normit ||-||; ja ||-||2 ovat ekvivalentteja, jos on olemassa
vakio C' > 0, jolle

1
Sllell < llelz < C llally  kaikille o € .

Lause 2.15. Olkoot ||-||1 ja ||||2 ekvivalentteja normeja avarvudessa E. Tdalloin ne mddrittelevit
saman topologian avaruuteen E.

Todistus. (Harjoitustehtavé) O
Esimerkkejia 2.16. (1) Avaruuden C" normit

n
el = [ D 121> da |zl = max|ay],
Jj=1 !
missd © = (21,29, ...,2,) € C", ovat ekvivalentit:

2]l < [la2ll < Vnll2||-

Myohemmin huomataan, ettd kaikki dérellisulotteisen vektoriavaruuden normit ovat ekviva-
lentteja.

(2) Olkoon

P = {p(z)zzakzk : a0,~~-,anEC,n€NU{O}}.

k=0
Talloin esimerkiksi

n
ol = lal  Ja |lplleo = max fagl,
k=0

missé p(z) = >, ax2", ovat normeja avaruudessa P. Ne eivit kuitenkaan ole ekvivalentit: jos

Pa(2) = 324 2%, on [[pallt = n+ 1 ja [|pallec = 1.
(3) Olkoon

CH0, 1) = {f: [0,1] = K : f,f", ..., f® ovat jatkuvia valilli [0, 1]},
kun k£ € N. Normit

k
1flle = sup [[/PNlss o Iflh =D [1/Plls
0<j<k =

ovat ekvivalentteja avaruudessa C*([0, 1]).



Olkoon (x,) normiavaruuden E jono. Jonosta (x,) voidaan muodostaa sarja

S = f: Tp.
n=1

Sanomme, ettd sarja S suppenee alkioon x € F, jos

m
= lim E Tn Essa.
m—ro0
n=1

Sanomme, ettd S suppenee itseisesti, jos

(o]
> ]| < oo
n=1

Esimerkki 2.17. Olkoon e, = (0,0,...,0, 1 ,0...) € £ kaikille n € N. Suppeneeko sarja

n:s

Enté suppeneeko se itseisesti?
Merkitaan

Koska

on x € (2.
Tarkastellaan osasummia

Nyt

joten sarja ei suppene itseisesti.

Lause 2.18. Normiavaruus E on Banach-avaruus jos ja vain jos sen jokainen itseisesti sup-

PENEVA SATIa SUppENEe.
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Todistus. Oletetaan ensin, ettd E on tédydellinen, ja (z,) on jono jonka muodostama sarja
suppenee itseisesti E:ssid. Merkitddn S, = >, x,,. Nyt, kun k& > m > 1, on kolmioepéyhtilon
ja itseisen suppenemisen nojalla
k 0
15 = Sull < S Mloall < 3 llzall 20, kunm — oo,

Siis .S, on Cauchy-jono, joka suppenee téaydellisyyden nojalla.

Oletetaan sitten, etté jokainen E':n itseisesti suppeneva sarja suppenee. Olkoon (z,) Cauchy-
jono E':ssd. Valitaan jokaiselle k£ € N indeksi n; € N siten, etté

|Zn — 2m|| <27%  kaikille n,m > my.
Merkitdén y, := x,,. Koska

ye=y1+ W —v)+ (s —v2) + -+ (Yb — Y1),

ja koska
Z Y1 — il < ZQ_k < 00,
k=1 k=1
jono
n—1
(Yn —11) = Z(yk—i—l — k)
k=1
suppenee oletuksen nojalla. Koska 16ysimme Cauchy-jonolle (x,,) suppenevan osajonon (y,),
suppenee alkuperiinen jono (z,) (Harjoitustehtiavi) ja siten E on tdydellinen. O

2.1. Lineaariset operaattorit. Olkoot E ja F' K-kertoimisia vektoriavaruuksia. KuvausT': £ —
F on lineaarinen jos

T(ax + py) = T (x) + BT(y)  kaikilla z,y € E ja o, 8 € K.

Kuvausta T sanotaan talloin usein lineaariseksi operaattoriksi ja merkitddn lyhyesti Tx =
T(x).

Jo Esimerkissé 0.1 huomasimme, etté lineaariset operaattorit eivét aina ole jatkuvia. Tulem-
me kohta liittdmaén jatkuvuuden rajoitettuihin lineaarisiin operaattoreiin.

Maaritelma 2.19. Olkoot E ja F normiavaruuksia ja T': £ — F' lineaarinen. Sanomme, etta
T on rajoitettu, jos on olemassa vakio C' < oo jolle

|Tz||lr < C||lz||lg kaikilla = € E.

Esimerkki 2.20. Olkoon T': * — (?: (z3)72, + (3wg41)72;. Télldin T on lineaarinen ja
rajoitettu:

1 1 1
nmugz(zmw) :3(21%12) s:a(zw) _ 3Jjell
k=1 k=1 k=1

Maaritelma 2.21. Olkoot E ja F' normiavaruuksia ja T: E — F' lineaarinen operaattori.
Operaattorin 7" normi on

1T = Tl g == sup{[[Tz||r - z € B, [lz]lz <1} € [0, 00].

Kyseessé on todella lineaarisen operaattorin normi mikéli ||7]| < oo.
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Lemma 2.22. Lineaarinen operaattori T: E — F' on rajoitettu jos ja vain jos sen normi on
adrellinen.

Todistus. Jos T on rajoitettu, on olemassa vakio C' < oo siten, etté
| Tz||r < C||z||g kaikilla = € T

Erityisesti ||7'|] < C' eli T:n normi on &érellinen.
Oletetaan kadntden, ettd ||T|] < oo. Koska HWH = 1 jokaisella x € E, x # 0, on
E

lineaarisuuden nojalla

<||T| kaikilla x € E.

Tasta saamme arvion
[Tz||r < |[|T[||2||

jokaisella x € E, eli T on rajoitettu. ([l

Esimerkki 2.23. Olkoon T': (2 — (*: (z)32, — (321)72,. Onko T rajoitettu? Hélderin
epayhtalolla ndhdéaan, etta

. 12/ o 1/2
|| T[]y = Z P (Z k2> (Z kaIQ) = V72 /6] z]]2.
k=1 k=1

Siten T on rajoitettu lineaarinen operaattori avaruudesta ¢? avaruuteen ¢! ja ||T|| < /7%/6.

Lause 2.24. Olkoot E ja F' normiavaruuksia ja T: E — F lineaarikuvaus. Tdlloin seuraavat
ehdot ovat yhtapitdvid:

(i) T on rajoitettu operaattori.

(ii) T on jatkuva E:ssd.

(iii) T on jakuva yhdessd pisteessi xg € E.
Todistus. Osoitetaan, ettd (i) = (ii) = (iil) = (i).

(i) = (ii): jos x,y € E ja € > 0, niin

€
Tz = Tyllr = 1Tz —y)llr < T -lle —ylle <€ kun |l —yllp < = Tl

eli T' on jatkuva FE:ssé.

(ii) = (iii): triviaalisti.

(ili) = (i): Olkoon T jatkuva pisteessd xy ja € > 0. Jatkuvuuden nojalla on olemassa 6 > 0
siten, ettd

l|lz — 20|l <0 = ||Tx — Tayl|r <e.
Olkoon nyt = € E jolle ||z||g < 6. Télléin lineaarisuuden nojalla
| Tz||r = |[T(2 + o) — Tol|[r <e.

Toisaalta, jos z € E ja ||z||g < 1, on ||dz||g = d||z||g < I ja siten

_ €
STzl =||T(0z)||F < e, ehHTx||p<g.

Niinpé ||T|| < § ja T' on rajoitettu. O
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Esimerkki 2.25. Palataan Esimerkkiin 0.3. Olkoon siis K: [0,1] x [0,1] — R jatkuva. Viite:
jos médritelldén jokaiselle f € C([0,1])

/Kws z € [0,1]

saadaan jatkuva lineaarinen operaattori T': (C([0,1]), || - ||o) = (C([0,1]), ] - ||oo)-

Tulee siis tarkistaa, ettd T:n arvot ovat C([0,1]):ssé, ettd T on lineaarinen ja ettd 7' on
rajoitettu.

Koska K on jatkuva, on se tasaisesti jatkuva kompaktissa joukossa [0, 1]. Olkoon € > 0. On
siis olemassa ¢ > 0 siten, etté

le —yl = ||(z,8) — (y,8)|]2 < 0 = |K(x,8) — K(x,8)] <€ kaikilla z,y, s € [0, 1].
Siten jos |z —y| < d ja f € C([0,1]) on myds

(TN - W =| [ Keoseas— [ Korea

< / K (2,5) — K(y, 8)||£()]ds < e / ()] ds < €| fl]oo

eli Tf € C([0,1]).

Integraalin lineaarisuuden nojalla 7" on selvistikin lineaarinen.

Tarkistetaan vield, ettd T" on rajoitettu. Koska K on jatkuva kuvaus kompaktilla joukolla, on
se rajoitettu eli on olemassa M < oo siten, ettd |K(x,s)] < M kaikilla (z,s) € [0,1]%. Olkoon
nyt f € C([0,1]). Télloin

T flloo = sup [(T'f)(x)] < sup / | K (2, 5)|f(s)]ds < M| f]]o,

z€[0,1] z€[0,1]
joten ||T|| < M ja T on rajoitettu.

2.2. LP-avaruudet. Olkoon 1 < p < oo, 2 C R™ Lebesgue-mitallinen joukko ja p Lebesguen
mitta R™:ssd. Méaritellaan kaikille mitallisille f: 2 — K kuvaus

11l = (/|f P du(a )

Tatd kdyttden méadritellddn normiavaruus (L?, || - ||,). Mitallisten funktioiden joukossa, missé
|| - || on &é&rellistd, on kuvaus || - ||, kultenkm vain seminormi, silli integraalin arvo ei muutu
muutettaessa funktiota nollamittaisessa joukossa. siksi méaérittelemme

LP(Q) ={f: Q — K : f mitallinen ja ||f||, < oo}/ ~,

missd f ~ ¢ jos ja vain jos f(z) = g(z) melkein kaikilla x € Q. Usein merkitsemme f € L
emmeké [f] € LP, jolloin ymmaérretaéan ettd otamme [f]n jonkin edustajan.

Jotta néin méadritelty avaruus (LP(£2), || - ||,) olisi normiavaruus, tulee todistaa, etta || - ||, on
seminormi ennen tekijdavaruuteen siirtymistéd. Kolmioepéayhtéld on ehdoista ainoa joka vaatii
pidemmén todistuksen.

Luvut p,q € R ovat duaalieksponentit jos p > 1, ¢ > 1 ja ne toteuttavat yhtélon

1 1
-+ -=1
P q
Todistetaan ensin Hoélderin epayhtélo, joka perinteisesti todistetaan seuraavaa lemmaa kayttéen.
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Lemma 2.26. Olkoot p ja q duaalieksponentit, a > 0 ja b > 0. Tdlloin
P e

(2.1) ab< =+
p q

Todistus. Jos a =0 tai b =0 on (2.1) selviti totta. Oletetaan siis, ettd a,b > 0. Mééritellddn

7 A
ot)=—+-—, >0
p q
Télloin
Pra _ 1
/ _ —1 —q—1 __
)=t -t = —

joten ¢'(t) < 0, kun 0 < t < 1 ja ¢'(t) > 0, kun ¢ > 1. Funktion ¢ minimi on siis pisteessi
t =1 ja siten

1 1 p/ap=1 —1pa/p
1:—+—:<p(1)§90(a1/qb’1/p): ¢ —l—a
p q p q
eli
qP/at+1 pa/p+1 aP b
ab < + = — 4+ —.

p q p q
0

Lause 2.27 (Holderin epayhtéld). Olkoon p ja q duaalieksponentit ja f,g: Q — K mitalliset
funktiot joille || f||, < oo ja |lg||, < co. Tdlldin

Fglls < 11 flellglly

Todistus. Jos ||f||l, = 0, on f(x) = 0 m.k. x € Q ja télloin myos fg(z) = 0 mk. z € Q ja
epayhtélo on triviaalisti totta. Samoin jos ||g||, = 0. Voimme siis olettaa, etté || f||,, ||g|l; > 0.
Kéytetadn Lemmaa 2.26 kaikille z € ) valitsemalla

f@) ()]
= LY/ h=
T, " Talls

jolloin saadaan epayhtélo

S@lle@l _ F@F | le@lr
kaikilla z € €.
P i T A

Téastéd saadaan integroimalla

_ _ 1 _ 1 _ 1 1
Hfupluguql/ foldu < —Hfl!p”/ Pt —ngqq/ glrdp=14to1
Q p Q q Q p q

Holderin epéyhtélolla saadaan todistettua Minkowskin epéayhtéld.

Lause 2.28 (Minkowskin epéyhtdld). Olkoot 1 < p < oo ja f,g: Q@ — K mitallisia funktioita.
Talloin

1F+ gllp < [[ £l + llgllp-
14



Todistus. Tapaus p = 1 on helppo, joten oletetaan, ettéd p > 1. Voidaan olettaa, etté || f+g||, >
0. Olkoon 1 < ¢ < oo siten, ettd p ja g ovat duaalieksponentit. Holderin epayhtélon ja K:n
kolmioepéayhtélon nojalla

/ﬂ|f+g|”du=/Q|f+9|p‘1|f+g\duS/ﬂ|f+9|p‘1|f|d/~b+/9|f+g|p‘1|g|du

<t ([ 17+ 1)l ([ 17+ ot o)
= (1l + 151 ( [1s+a du)q |

Tésté seuraa haluttu epéyhtéls jakamalla puolittain luvulla (f;, |f + g|” du)* > 0. Témé on
mahdollista, silla

p) g B p P\ L
L1+ gl du) " <2515l + gl < oo,
0
U
Lause 2.29. Olkoon 1 < p < oo ja  C R™ mitallinen. Tdalloin (L, ||-||,) on Banach-avaruus.

Todistus. Integraalin lineaarisuuden ja Minkowskin epédyhtélon avulla helposti ndhdéan, ettéa
(LP,]| - ||,) on normiavaruus. Todistettavana siis lahinné taydellisyys.

Olkoon ) f, itseisesti suppeneva sarja avaruudessa LP, eli M = " || f,||, < oco. Tavoitteena
on 16ytaéd f € LP siten, etté
k

an_f

n=1

=0.

p

lim
k—o00

Merkitaan
k
ge() =D _|fal®)],  kaikillaz € Q,
n=1

jolloin Minkowskin epayhtélon nojalla
k
lgelly < Y [ fally <M, kaikilla k € N.
n=1

Monotonisen konvergenssin nojalla
P

o P %
/Q (; |fn|> dp = khlf}o/g (; |fn|> dpp = lim lge[[; < M? < oo,
joten
9= |fal € L".
Siten g(x) < oo melkein kaikilla = € Q2 ja n;izliéi x sarja

f(x) = ful@)
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