0. JOHDANTO

Katsotaan kolmen esimerkin avulla millaisiin ongelmiin ddretonulotteisissa vektoriavaruuk-
sissa tormétdan ja millaisiin kysymyksiin funktionaalianalyysin avulla pyritdin vastaamaan.

Jokainen lineaarikuvaus L: R™ — R” voidaan esittdd muodossa Lxr = Az, missd A on mat-
riisi. Erityisesti L on aina jatkuva. Jos R"™ korvataan daretonulotteisella avaruudella, ei néin
aina ole.

Esimerkki 0.1. Asetetaan avaruuteen

CP(R)={f: R — R : f on ddrettomén monta kertaa derivoituva ja

kompaktikantajainen eli 3r > 0 s.e. f|R\B(0,T) =0}

normi
1l = mase | ().
Néin saadaan normiavaruus (C3°(R), || - ||). Tarkastellaan derivaattakuvausta

D: (CER). |- llee) = (Ce(R), || - l): S > f"

Kuvaus D on selvéstikin lineaarinen. Se ei kuitenkaan ole jatkuva, silld on olemassa jono (f;) C
C5°(R) siten, ettd || fj||cc — 0, mutta ||Df;||c — co. (Harjoitustehtéava)

Esimerkki 0.2. Etsitdédn ratkaisua minimointiongelmalle
1
i ")) dt
i [ 170t
missa
A={feC'(R): f(-1) = f(1) =1, f(0) =0}
Tarkastellaan ensin funktiota f € A, fi(t) = [t|F, k > 1. Nyt
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[inopar=2 [eeeva= 2 e ko

Siten, jos minimoija f € A on olemassa, on sille voimassa

(0.1) /_1 PR dE < 2.

Oletetaan nyt, ettd minimoija f on olemassa. Tall6in

2= (f(1) — £(0)) + (F(~1) - £(0)) = f&ﬁﬁ—/}f@dt

02) < [ va( [ irora)

Holderin epayhtilon nojalla. Yhdistaméalld tdmé epdyhtdlon (0.1) kanssa huomataan, etta ylla
kaikki epayhtalot ovat yhtéloita. Erityisesti

f#)>0kunt>0 ja  f(t)<0kunt<O.

Siten f/(0) = 0 ja tarpeeksi pienelle € > 0 on
€ €

|f(e)] < 0 ﬁz |f(—€)] < o

= O



Jélleen Holderin epéayhtalolla ndhdééan, etta
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mikd on ristiriidassa f:n minimaalisuuden kanssa. Siten minimoijaa ei ole.

Toisaalta funktio fi, fi(t) = |t|, vaikkakaan ei ole C'-funktio, on hyvd minimoija siind mie-
lessé, ettd kaikki epdyhtélot (0.2) ovat yhtdloitd. Tulisi siis mééritelld ongelmaan sopivampi
funktioavaruus A. Funktioavaruuden alkuperéisen méaritelmén ongelma on se ettei se ole sopi-
vassa mielessd taydellinen.

Esimerkki 0.3. Tarkastellaan integraaliyhtaloa

(0.3) / K(x,s) = g(z), x € [0,1],

missd g: [0,1] — R ja K: [0,1] x [0,1] — R ovat annettuja jatkuvia kuvauksia, seki A € R on
parametri. Tehtdvani on 16ytaa funktlo jolle yhtalo (0.3) pétee.

Jotta tehtdvai voidaan ldhestyd funktionaalianalyysin ndkokulmasta, tulee ensin 16ytaé so-
piva funktioavaruus ja sille normi. Hyvé ehdokas on C([0,1]) eli vélin [0, 1] jatkuvien funk-
tioiden avaruus varustettuna jo Esimerkissd 0.1 kdytetylld || - || normilla. Funktioavaruus
(C([0,1]), ]| ||eo) on tdydellinen, toisin kuin edellisessi Esimerkissi 0.2 ollut funktioavaruus C*
varustettuna jollain esimerkin minimointiongelmaan liittyvalla normilla.

Integraaliyhtaloon (0.3) liittyy operaattori (kuvaus)

T C(0,1]) — C([0, 1)), / K(z,s) v e 0,1

Huomataan, ettd tamé kuvaus on avaruuden C([0, 1]) yhteenlaskun suhteen lineaarinen. Inte-
graaliyht&lo (0.3) voidaan kirjoittaa operaattoriyhtédlomuotoon

(I =AT)(f) = f = AT(f) =g,
missé [ on avaruuden C([0, 1]) identtinen kuvaus. Kysymys siis on onko lineaarinen operaattori

I — AT kdéntyva. Myohemmin tulemme huomaamaan, ettd pienilld |A|:n arvoilla operaattori
on kddntyvd, mutta toisaalta ei ole sitéd kaikilla K, g ja A.



1. METRISET AVARUUDET

Maiédritelméi 1.1. Olkoon X # () joukko. Kuvaus d: X x X — [0,00) on etdisyys eli metriikka
X:ssé, jos se toteuttaa

(M1) d(z,z) < d(z,y) + d(y, ) kaikilla x,y,z € X,

(M2) d(z,y) = d(y, z) kaikilla z,y € X ja

(M3) d(z,y) = 0 jos ja vain jos = = y.

Paria (X, d) eli joukkoa X varustettuna metriikalla d sanotaan metriseksi avaruudeksi.

Olkoon (X, d) metrinen avaruus, x € X ja r > 0. Merkitdan
B(z,r)={y e X : d(z,y) <r} (avoin pallo)
B(z,r)={y€ X : d(z,y) <r} (suljettu pallo)

Muistutukseksi metristen avaruuksien késitteistoa: Joukko A C X on avoin jos jokaisella z €
A on olemassa r > 0 siten, ettd B(x,r) C A. Joukko A C X on suljettu, jos sen komplementti
A ={rx € X : = ¢ A} on avoin. Kuvaus f: (X,d) — (Y,d") on jatkuva pisteessi x € X, jos
kaikille € > 0 on olemassa ¢ > 0 siten, ettd d'(f(z), f(y)) < € aina kun d(z,y) < 6. Kuvaus f
on jatkuva X:ssé, jos f on jatkuva jokaisessa pisteessd r € X.

Perusesimerkki metrisestéd avaruudesta on R™ varustettuna euklidisella metriikalla

n

>l

i=1

Avaruuden (X, d) jono (z,) suppenee alkioon = € X, x,, — z, jos kaikilla € > 0 on olemassa
n. € N siten, ettd d(z,,r) < € aina kun n > n.. (X, d):n osajoukko K on kompakti, jos jokaisella
K:n jonolla (z,) on osajono joka suppenee johonkin = € K.

Avaruuden (X, d) jono (x,) on Cauchy-jono, jos kaikilla € > 0 on olemassa n. € N siten, etti
d(zpm, x,) < € aina kun n,m > n.. Avaruus (X, d) on tdydellinen, jos sen jokainen Cauchy-jono
suppenee.

Metrinen avaruus (X, d) on separoituva, jos on olemassa numeroituva osajoukko A C X jolle
A = X. Joukkoa A sanotaan talloin tihedksi X :ssi.

Esimerkki separoituvasta metrisestd avaruudesta on R™ euklidisella metriikalla, jossa tihedna
numeroituvana joukkona on Q".

Lause 1.2. Jokainen metrinen avaruus (X, d) voidaan tiydellistid, eli on olemassa tiydellinen
(X,d) siten, etti X on tihed (X,d):ssi ja d(x,y) = d(z,y) kaikilla v,y € X.

Todistus. (Todistus on ollut metristen avaruuksien kurssilla, joten luennoilla se ohitettiin. Téassa
kuitenkin muistutukseksi.)
Asetetaan X = &/ ~, missd

® = {(z,,) : (x,) on Cauchy-jono avaruudessa X}

ja (zy) ~ (yn) jos javain jos lim, e d(2, y,) = 0. Médritelladn d([(z,)], [(yn)]) = limy—se0 d(@n, Yn).
Osoitetaan, ettd funktio d on hyvin mééritelty. Olkoon [(z,,)] = [(z])] ja [(yn)] = [(¥))]-
Talloin
A0 1)) = (1)L (WD) = | Tim d(@n, o) — lim d(z),,9,)
= lim [d(2n, yn) — d(z7, ) < lim \d<wn, ) +d(ymyn)| =0.
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s (Yn), (2n) € © on

Tp, 2n) < lim (d(zn, Yn) + d(Yn, 20))
n—oo

Ty Yn) + JLHC}O d(Yn, 2n)

Siten d on hyvin mééritelty. Kaikilla (@,
d([(2a)], [(z4)]) = lim d

= lim d
n—oo

= d([(ea). () + A([(9)], [(20)),
([ [(3)]) = Jim d(, ) = lim dys, ) = d([(wn). [(2))

n—

~— o~ —~

Ja .

d({(zn)]; [(zn)]) = lim d(zp, 25) = 0.

n—o0

d([(a)], [(90)]) = lim () =0,

on (z,) ~ (yn) ja siten [(z,)] = [(y.)]. On siis osoitettu, ettii d on etiisyysfunktio.

Samaistaen z ja [(z,)], missi x, = z kaikilla n € N, saadaan X C X ja d(z,y) = d(z,y)
kaikilla 2,y € X. Olkoon [(z,,)] € X ja € > 0. Koska (x,,) on Cauchy, on olemassa N € N siten,
ettd d(zy, [(2,)]) = lim, 500 d(2n, 7,) < €. Siis X on tihed X:ssi.

Olkoon (a;)i2; = ([(:cil)]) Cauchy-jono X:ssi. Tiheyden nojalla kaikilla ¢ € N on olemassa
Ji siten, etta d( xh) < 1/i. Koska (a;) on Cauchy-jono X:ssi, on (x} )72, Cauchy-jono X:ss.

]

Siten a., = [(2%)] E X. Nyt

Jos

_ 1
d(ai, a0o) < d(ai, a5,) +d (2}, a00) <~ + lim d(a,25,) =0,

k—o0

kun i — oo. Siis (X, d) on tiydellinen. O

Lause 1.3. Olkoon (X,d) metrinen avaruus jossa on olemassa ylinumeroituva kokoelma U
avaruuden X avoimia pistevieraita epdtyhjii joukkoja. Tallin (X, d) ei ole separoituva.

Todistus. Oletetaan, ettéd (X, d) on separoituva. Télloin on olemassa numeroituva A C X siten,
etti A = X. Jokainen U € U on epityhji ja avoin, joten on olemassa zy € U ja ry > 0 siten,
ettd B(xy,ry) C U. Koska A on tihed X:ssi, on olemassa ay € AN B(zy, ry). Niinpé jokaiseen
U € U voidaan liittédd a(U) := ay € A. Koska joukot U ovat pistevieraita, on kuvus a: U — A
injektio. Siten U on numeroituva, mika on ristiriidassa oletuksen kanssa. 0



2. BANACH-AVARUUDET
Olkoon E vektoriavaruus skalaarikuntana K (talld kurssilla aina joko R tai C), eli

Maaritelma 2.1. Olkoon K kunta. Télloin joukko E varustettuna yhteenlaskulla F x E —
E: (z,y) — z+y ja skalaarikertomisella K x £ — E': (A, x) — Az on vektoriavaruus ja kuntaa
K sanotaan sen skalaarikunnaksi, jos seuraavat ehdot toteutuvat
() 2+ (y+2) = (x+y) + 2 kaikilla z,y,z € E,
r+y=y+x kaikilla x,y € E,
On olemassa nollavektori 0 € E jolle z + 0 = z kaikilla z € E,

(2)

(3)

(4) Jokaiselle x € E on olemassa vastavektori —z € E jolle x + (—x) = 0,
(5) a(fx) = (af)x kaikilla a, € K jaz € E,

(6) 1z = z kaikilla z € E, missd 1 on kunnan K neutraalialkio,

(7) a(z+y) =ar+ ay kalkﬂlaaeKJax y € FE, ja

(8) (a+ f)r = ax + Pz kaikilla a, f € Kjaz € E.

Vektoriavaruuden E dimensio dim(F) on E:n kannan (vapaan virittdjdjoukon) vektoreiden
lukumé&éra. Joukko {xi,zs,...,2,} C E on E:n kanta jos ja vain jos jokaisella z € E on
olemassa yksikésitteinen esitys

T =MT1+ XoTo + -+ Ay,
vektoreiden 1, xs, ..., x, lineaarikombinaationa.

Esimerkkeja 2.2. (1) C" on C-kertoiminen vektoriavaruus, jonka ulottuvuus on n. (Joukko
{(1,0,...,0)....,(0,...,0,1)} on erds avaruuden C" kanta).
(2) Kompleksikertoimisten polynomien avaruuden

P = {p(z):Zakzk : ao,...,anGQnGNU{O}},

k=0

missé yhteenlasku ja skalaarilla kertominen mééaritellasn pisteittédin, on ddretonulotteinen. Erds
kanta on {p,(z) = z"}>2,.
Mairitelméi 2.3. Olkoon E K-kertoiminen vektoriavaruus. Kuvaus p: £ — [0, 00) on normi
Essé, jos

(N1) p(z +y) < p(z) + p(y) kaikilla z,y € E,

(N2) p(Ax) = |A|p(x) kaikilla € E ja X € K, ja

(N3) p(z) = 0 jos ja vain jos x = 0.
Tavallisesti merkitdan ||z|| = p(z). Paria (E, || - ||) sanotaan normiavaruudeksi.

Kuvaus p: E — [0,00) on seminormi E:ssé jos se toteuttaa edellisen mééritelmén muut
ehdot paitsi ei vélttaméatta ehtoa (N3). Seminormi p méérittd4 normin tekijaavaruuteen E/ ~,
missi © ~ y joss p(z — y) = 0. (Semi)normia p(-) merkitdén usein || - ||.

Esimerkkeja 2.4. (1) Avaruudessa R" kiytetaéin yleensé euklidista normia

|2[l2 = x = (1, .-, Tn).

Hieman mydhemmin korvataan potenssi 2 yleisemmalla luvulla p ja annetaan ulottuvuuden n

menné darettomadn. Niin saadaan avaruus ¢P:
6



(2) Olkoon p € [1,00). Télloin P-avaruus médritelldédn normiavaruutena

%0 7
=gz =(2n)nsy « 7]l = (wa) <00,
n=1

missd z, € K ja yhteenlasku ja skalaarilla kertominen on mééritelty koordinaateittain:

(@n) + (yn) = (Tn +4m)  Ja Aan) = (Azn).
(3) Olkoon A joukko ja

B(AK) = {f A=K flleo ::iu§|f(t)| < oo}
€
Tamé on rajoitettujen kuvausten A — K vektoriavaruus, jos asetetaan

(f+9)@) = f() +9(),  ANHE) =Af(H)  kun f,g€ B(A,K),AeK.

Kuvaus || + ||«o on normi B(A, K):ssa. (Harjoitustehtavé)
(4) Edellisen kohdan erikoistapauksena valitsemalla A = {1,...,n} saadaan normi
[|2[loo := max([a], . .., |2n),
missi ¢ = (z1,...,2,) € R™

(5) Toinen kohdan (2) erikoistapaus saadaan asettamalla A = N. T&lloin merkitain
> .= B(N,K) = {:c = ()00 p € K ||2]|oo = sup |z,] < oo} :
neN

Yksinkertainen tapa tuottaa lisdé normiavaruuksia on ottaa normiavaruuksien vektorialiava-
ruuksia.

Lause 2.5. Jokainen normiavaruuden (E,|| - ||) vektorialiavaruus F on normiavaruus E:n
indusoimalla normilla.

Esimerkkeja 2.6. (1) Vilin [0, 1] jatkuvien kuvausten avaruutta C([0, 1]) voidaan tutkia vaik-
kapa normiavaruuden (B([0,1],K,|| - ||«)) aliavaruutena.
(2) Avaruuden ¢ eriitd jonoaliavaruuksia:

c:={(x,); € > : lim x, on olemassa},
n—oo
co = {(x,);0 € £ ¢ lim z, = 0}.
n—oo
Lause 2.7. Olkoon (E,||-||) normiavaruus. TdllGin
(1) kaikilla z,y € E on voimassa
[l = 1lgll] < ll = .

FErityisesti, kuvauksen normi x — ||z|| on tasaisesti jatkuva E:ssd.
(2) kuwvaus d: E x E — [0,00), d(z,y) = ||z — y|| on metriikka avaruudessa E.

Todistus. (Helppo) O

Normiavaruudet ovat siis metrisid avaruuksia ja voidaan puhua normiavaruuden avoimista

joukoista, jatkuvuudesta jne. Normiavaruudet ovat kuitenkin usein hyvin suuria:
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Esimerkki 2.8. Normiavaruus (¢, || ||~) €l ole separoituva. Tdméa nédhdéén ottamalla ylinu-
meroituva joukko (muista, ettd joukon potenssijoukko on aina mahtavampi kuin joukko itse)

F={xa:ACN}C/,

(2) = 1, josze A
A4S = 0, josz¢ A’

Jokaiselle A, B C N on ||xa — x8l|lc = 1 jos A # B. Siispd {B(f,1/2)}ser on ylinumeroitu-
va kokoelma pistevieraita avoimia joukkoja £*°:ssé ja siten > ei ole separoituva Lauseen 1.3
nojalla.

misséa

Lisdksi adretonulotteisissa normiavaruuksissa avoimet ja suljetut joukot voivat olla joskus
ensindkemaltd yllattavia verrattuna Fuklidisiin avaruuksiin.

Esimerkki 2.9. Olkoon
1
A={(zn)2, €y |z < - kaikilla n € N}.

Tallsin A ei ole avoin avaruudessa (co, ||« |]oo)-

Esimerkiksi 0 = (0,0,...) € A, mutta kaikilla 7 > 0 on olemassa m € N siten, etti % <r,ja
talloin jolle (z,)9%,, jossa z, = %, jos n = m ja z, = 0 muuten, pitee (z,)°, € B(0,r) \ A.
Siten 0 ei ole A:n sisépiste eiké A ole avoin.

Normiavaruus (F, ||-||) on tdydellinen, jos (E, ||-||) on tdydellinen metrinen avaruus. Téydellista
normiavaruutta kutsutaan Banach-avaruudeksi.

Lause 2.10. Jokainen normiavaruus (I, || - |[1) voidaan taydellistid, eli on olemassa Banach-
avaruus (E, || -||2) siten, ettd E on tihed avaruudessa (E,||-|]2) ja ||z|]1 = ||z||2 kaikilla x € E.
Todistus. (Harjoitustehtdvé, vertaa Lauseeseen 1.2.) O
Lause 2.11. Avaruus (¢*,] - ||,) on Banach-avaruus kaikilla p € [1, 00].

Todistus. Todistus p:n &érellisille arvoille ndhdéddn myohemmin LP-avaruuksien tapauksessa.
Seuraavassa lauseessa nahdéian tapaus p = oo yleisemmaéssé kontekstissa. ([l

Lause 2.12. (B(A,K), || ||e) on Banach-avaruus.
Todistus. Olkoot (z,,) Cauchy-jono avaruudessa (B(A,K),|| - ||«), € > 0 ja t € A. Koska on

olemassa n. € N siten, etta

|2 () — 2 (B)| < |2k — ZTim|oo < € kaikilla k,m > n.

on (zx(t))72; Cauchy-jono avaruudessa K. Koska K on tdydellinen, on olemassa x(t) := lim,,_, ,(t) €
K.
Todistaaksemme lauseen viite, tulee nyt osoittaa, etta

(2) z, = x kun n — oo avaruudessa (B(A,K), || - |]o0)-
Olkoot € > 0 ja n. € N kuten ylld. Kun m > n., saadaan
||Zm — @||oo = sup |z, (t) — 2(t)] < sup lim |x,,(t) — zx(t)] <€,
teA teA k—oo
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