
0. Johdanto

Katsotaan kolmen esimerkin avulla millaisiin ongelmiin ääretönulotteisissa vektoriavaruuk-
sissa törmätään ja millaisiin kysymyksiin funktionaalianalyysin avulla pyritään vastaamaan.
Jokainen lineaarikuvaus L : Rn → Rn voidaan esittää muodossa Lx = Ax, missä A on mat-

riisi. Erityisesti L on aina jatkuva. Jos Rn korvataan ääretönulotteisella avaruudella, ei näin
aina ole.

Esimerkki 0.1. Asetetaan avaruuteen

C∞
0 (R) = {f : R → R : f on äärettömän monta kertaa derivoituva ja

kompaktikantajainen eli ∃r > 0 s.e. f |R\B(0,r) ≡ 0}
normi

||f ||∞ := max
x∈R

|f(x)|.

Näin saadaan normiavaruus (C∞
0 (R), || · ||∞). Tarkastellaan derivaattakuvausta

D : (C∞
0 (R), || · ||∞) → (C∞

0 (R), || · ||∞) : f 7→ f ′.

Kuvaus D on selvästikin lineaarinen. Se ei kuitenkaan ole jatkuva, sillä on olemassa jono (fj) ⊂
C∞

0 (R) siten, että ||fj||∞ → 0, mutta ||Dfj||∞ → ∞. (Harjoitustehtävä)

Esimerkki 0.2. Etsitään ratkaisua minimointiongelmalle

min
f∈Λ

∫ 1

−1

|f ′(t)|2 dt,

missä

Λ =
{
f ∈ C1(R) : f(−1) = f(1) = 1, f(0) = 0

}
Tarkastellaan ensin funktiota fk ∈ Λ, fk(t) = |t|k, k > 1. Nyt∫ 1

−1

|f ′
k(t)|2 dt = 2

∫ 1

0

k2t2(k−1) dt =
2k2

2k − 1
→ 2, kun k → 1.

Siten, jos minimoija f ∈ Λ on olemassa, on sille voimassa

(0.1)

∫ 1

−1

|f ′(t)|2 dt ≤ 2.

Oletetaan nyt, että minimoija f on olemassa. Tällöin

2 = (f(1)− f(0)) + (f(−1)− f(0)) =

∫ 1

0

f ′(t) dt−
∫ 0

−1

f ′(t) dt

≤
∫ 1

−1

|f ′(t)| dt ≤
√
2

(∫ 1

−1

|f ′(t)|2 dt
) 1

2

(0.2)

Hölderin epäyhtälön nojalla. Yhdistämällä tämä epäyhtälön (0.1) kanssa huomataan, että yllä
kaikki epäyhtälöt ovat yhtälöitä. Erityisesti

f ′(t) ≥ 0 kun t > 0 ja f ′(t) ≤ 0 kun t < 0.

Siten f ′(0) = 0 ja tarpeeksi pienelle ϵ > 0 on

|f(ϵ)| < ϵ

10
ja |f(−ϵ)| < ϵ

10
.
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Jälleen Hölderin epäyhtälöllä nähdään, että

1− ϵ

10
≤ f(1)− f(ϵ) ≤

∫ 1

ϵ

|f ′(t)| ≤
√
1− ϵ

(∫ 1

0

|f ′(t)|2 dt
) 1

2

,

eli ∫ 1

0

|f ′(t)|2 dt ≥
(1− ϵ

10
)2

1− ϵ
> 1.

Vastaavasti ∫ 0

−1

|f ′(t)|2 dt > 1,

joten ∫ 1

−1

|f ′(t)|2 dt > 2,

mikä on ristiriidassa f :n minimaalisuuden kanssa. Siten minimoijaa ei ole.
Toisaalta funktio f1, f1(t) = |t|, vaikkakaan ei ole C1-funktio, on hyvä minimoija siinä mie-

lessä, että kaikki epäyhtälöt (0.2) ovat yhtälöitä. Tulisi siis määritellä ongelmaan sopivampi
funktioavaruus Λ. Funktioavaruuden alkuperäisen määritelmän ongelma on se ettei se ole sopi-
vassa mielessä täydellinen.

Esimerkki 0.3. Tarkastellaan integraaliyhtälöä

(0.3) f(x)− λ

∫ 1

0

K(x, s)f(s) ds = g(x), x ∈ [0, 1],

missä g : [0, 1] → R ja K : [0, 1]× [0, 1] → R ovat annettuja jatkuvia kuvauksia, sekä λ ∈ R on
parametri. Tehtävänä on löytää funktio, jolle yhtälö (0.3) pätee.
Jotta tehtävää voidaan lähestyä funktionaalianalyysin näkökulmasta, tulee ensin löytää so-

piva funktioavaruus ja sille normi. Hyvä ehdokas on C([0, 1]) eli välin [0, 1] jatkuvien funk-
tioiden avaruus varustettuna jo Esimerkissä 0.1 käytetyllä || · ||∞ normilla. Funktioavaruus
(C([0, 1]), || · ||∞) on täydellinen, toisin kuin edellisessä Esimerkissä 0.2 ollut funktioavaruus C1

varustettuna jollain esimerkin minimointiongelmaan liittyvällä normilla.
Integraaliyhtälöön (0.3) liittyy operaattori (kuvaus)

T : C([0, 1]) → C([0, 1]), (Tf)(x) =

∫ 1

0

K(x, s)f(s) ds, x ∈ [0, 1].

Huomataan, että tämä kuvaus on avaruuden C([0, 1]) yhteenlaskun suhteen lineaarinen. Inte-
graaliyhtälö (0.3) voidaan kirjoittaa operaattoriyhtälömuotoon

(I − λT )(f) = f − λT (f) = g,

missä I on avaruuden C([0, 1]) identtinen kuvaus. Kysymys siis on onko lineaarinen operaattori
I − λT kääntyvä. Myöhemmin tulemme huomaamaan, että pienillä |λ|:n arvoilla operaattori
on kääntyvä, mutta toisaalta ei ole sitä kaikilla K, g ja λ.
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1. Metriset avaruudet

Määritelmä 1.1. Olkoon X ̸= ∅ joukko. Kuvaus d : X ×X → [0,∞) on etäisyys eli metriikka
X:ssä, jos se toteuttaa

(M1) d(x, z) ≤ d(x, y) + d(y, z) kaikilla x, y, z ∈ X,
(M2) d(x, y) = d(y, x) kaikilla x, y ∈ X ja
(M3) d(x, y) = 0 jos ja vain jos x = y.

Paria (X, d) eli joukkoa X varustettuna metriikalla d sanotaan metriseksi avaruudeksi.

Olkoon (X, d) metrinen avaruus, x ∈ X ja r > 0. Merkitään

B(x, r) = {y ∈ X : d(x, y) < r} (avoin pallo)

B(x, r) = {y ∈ X : d(x, y) ≤ r} (suljettu pallo)

Muistutukseksi metristen avaruuksien käsitteistöä: Joukko A ⊂ X on avoin jos jokaisella x ∈
A on olemassa r > 0 siten, että B(x, r) ⊂ A. Joukko A ⊂ X on suljettu, jos sen komplementti
Ac = {x ∈ X : x /∈ A} on avoin. Kuvaus f : (X, d) → (Y, d′) on jatkuva pisteessä x ∈ X, jos
kaikille ϵ > 0 on olemassa δ > 0 siten, että d′(f(x), f(y)) < ϵ aina kun d(x, y) < δ. Kuvaus f
on jatkuva X:ssä, jos f on jatkuva jokaisessa pisteessä x ∈ X.
Perusesimerkki metrisestä avaruudesta on Rn varustettuna euklidisella metriikalla

d(x, y) =

√√√√ n∑
i=1

|xi − yi|2.

Avaruuden (X, d) jono (xn) suppenee alkioon x ∈ X, xn → x, jos kaikilla ϵ > 0 on olemassa
nϵ ∈ N siten, että d(xn, x) < ϵ aina kun n ≥ nϵ. (X, d):n osajoukko K on kompakti, jos jokaisella
K:n jonolla (xn) on osajono joka suppenee johonkin x ∈ K.
Avaruuden (X, d) jono (xn) on Cauchy-jono, jos kaikilla ϵ > 0 on olemassa nϵ ∈ N siten, että

d(xm, xn) < ϵ aina kun n,m ≥ nϵ. Avaruus (X, d) on täydellinen, jos sen jokainen Cauchy-jono
suppenee.

Metrinen avaruus (X, d) on separoituva, jos on olemassa numeroituva osajoukko A ⊂ X jolle
Ā = X. Joukkoa A sanotaan tällöin tiheäksi X:ssä.
Esimerkki separoituvasta metrisestä avaruudesta on Rn euklidisella metriikalla, jossa tiheänä

numeroituvana joukkona on Qn.

Lause 1.2. Jokainen metrinen avaruus (X, d) voidaan täydellistää, eli on olemassa täydellinen
(X̄, d̄) siten, että X on tiheä (X̄, d̄):ssä ja d(x, y) = d̄(x, y) kaikilla x, y ∈ X.

Todistus. (Todistus on ollut metristen avaruuksien kurssilla, joten luennoilla se ohitettiin. Tässä
kuitenkin muistutukseksi.)

Asetetaan X̄ = Φ/ ∼, missä

Φ = {(xn) : (xn) on Cauchy-jono avaruudessa X}
ja (xn) ∼ (yn) jos ja vain jos limn→∞ d(xn, yn) = 0. Määritellään d̄([(xn)], [(yn)]) = limn→∞ d(xn, yn).
Osoitetaan, että funktio d̄ on hyvin määritelty. Olkoon [(xn)] = [(x′n)] ja [(yn)] = [(y′n)].

Tällöin ∣∣d̄([(xn)], [(yn)])− d̄([(x′n)], [(y
′
n)])
∣∣ = ∣∣∣ lim

n→∞
d(xn, yn)− lim

n→∞
d(x′n, y

′
n)
∣∣∣

= lim
n→∞

|d(xn, yn)− d(x′n, y
′
n)| ≤ lim

n→∞
|d(xn, x′n) + d(y′n, yn)| = 0.
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Siten d̄ on hyvin määritelty. Kaikilla (xn), (yn), (zn) ∈ Φ on

d̄([(xn)], [(zn)]) = lim
n→∞

d(xn, zn) ≤ lim
n→∞

(d(xn, yn) + d(yn, zn))

= lim
n→∞

d(xn, yn) + lim
n→∞

d(yn, zn)

= d̄([(xn)], [(yn)]) + d̄([(yn)], [(zn)]),

d̄([(xn)], [(yn)]) = lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, xn) = d̄([(yn)], [(xn)])

ja
d̄([(xn)], [(xn)]) = lim

n→∞
d(xn, xn) = 0.

Jos
d̄([(xn)], [(yn)]) = lim

n→∞
d(xn, yn) = 0,

on (xn) ∼ (yn) ja siten [(xn)] = [(yn)]. On siis osoitettu, että d̄ on etäisyysfunktio.
Samaistaen x ja [(xn)], missä xn = x kaikilla n ∈ N, saadaan X ⊂ X̄ ja d̄(x, y) = d(x, y)

kaikilla x, y ∈ X. Olkoon [(xn)] ∈ X̄ ja ϵ > 0. Koska (xn) on Cauchy, on olemassa N ∈ N siten,
että d̄(xN , [(xn)]) = limn→∞ d(xN , xn) < ϵ. Siis X on tiheä X̄:ssä.
Olkoon (ai)

∞
i=1 = ([(xin)])

∞
i=1 Cauchy-jono X̄:ssä. Tiheyden nojalla kaikilla i ∈ N on olemassa

ji siten, että d̄(ai, x
i
ji
) < 1/i. Koska (ai) on Cauchy-jono X̄:ssä, on (xiji)

∞
i=1 Cauchy-jono X:ssä.

Siten a∞ = [(xiji)] ∈ X̄. Nyt

d̄(ai, a∞) ≤ d̄(ai, x
i
ji
) + d(xiji , a∞) <

1

i
+ lim

k→∞
d(xiji , x

k
jk
) → 0,

kun i→ ∞. Siis (X̄, d̄) on täydellinen. □

Lause 1.3. Olkoon (X, d) metrinen avaruus jossa on olemassa ylinumeroituva kokoelma U
avaruuden X avoimia pistevieraita epätyhjiä joukkoja. Tällöin (X, d) ei ole separoituva.

Todistus. Oletetaan, että (X, d) on separoituva. Tällöin on olemassa numeroituva A ⊂ X siten,
että Ā = X. Jokainen U ∈ U on epätyhjä ja avoin, joten on olemassa xU ∈ U ja rU > 0 siten,
että B(xU , rU) ⊂ U . Koska A on tiheä X:ssä, on olemassa aU ∈ A∩B(xU , rU). Niinpä jokaiseen
U ∈ U voidaan liittää α(U) := aU ∈ A. Koska joukot U ovat pistevieraita, on kuvus α : U → A
injektio. Siten U on numeroituva, mikä on ristiriidassa oletuksen kanssa. □
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2. Banach-avaruudet

Olkoon E vektoriavaruus skalaarikuntana K (tällä kurssilla aina joko R tai C), eli

Määritelmä 2.1. Olkoon K kunta. Tällöin joukko E varustettuna yhteenlaskulla E × E →
E : (x, y) 7→ x+ y ja skalaarikertomisella K×E → E : (λ, x) 7→ λx on vektoriavaruus ja kuntaa
K sanotaan sen skalaarikunnaksi, jos seuraavat ehdot toteutuvat

(1) x+ (y + z) = (x+ y) + z kaikilla x, y, z ∈ E,
(2) x+ y = y + x kaikilla x, y ∈ E,
(3) On olemassa nollavektori 0̄ ∈ E jolle x+ 0̄ = x kaikilla x ∈ E,
(4) Jokaiselle x ∈ E on olemassa vastavektori −x ∈ E jolle x+ (−x) = 0̄,
(5) α(βx) = (αβ)x kaikilla α, β ∈ K ja x ∈ E,
(6) 1x = x kaikilla x ∈ E, missä 1 on kunnan K neutraalialkio,
(7) α(x+ y) = αx+ αy kaikilla α ∈ K ja x, y ∈ E, ja
(8) (α + β)x = αx+ βx kaikilla α, β ∈ K ja x ∈ E.

Vektoriavaruuden E dimensio dim(E) on E:n kannan (vapaan virittäjäjoukon) vektoreiden
lukumäärä. Joukko {x1, x2, . . . , xn} ⊂ E on E:n kanta jos ja vain jos jokaisella x ∈ E on
olemassa yksikäsitteinen esitys

x = λ1x1 + λ2x2 + · · ·+ λnxn

vektoreiden x1, x2, . . . , xn lineaarikombinaationa.

Esimerkkejä 2.2. (1) Cn on C-kertoiminen vektoriavaruus, jonka ulottuvuus on n. (Joukko
{(1, 0, . . . , 0). . . . , (0, . . . , 0, 1)} on eräs avaruuden Cn kanta).

(2) Kompleksikertoimisten polynomien avaruuden

P =

{
p(z) =

n∑
k=0

akz
k : a0, . . . , an ∈ C, n ∈ N ∪ {0}

}
,

missä yhteenlasku ja skalaarilla kertominen määritellään pisteittäin, on ääretönulotteinen. Eräs
kanta on {pn(z) = zn}∞n=0.

Määritelmä 2.3. Olkoon E K-kertoiminen vektoriavaruus. Kuvaus p : E → [0,∞) on normi
E:ssä, jos

(N1) p(x+ y) ≤ p(x) + p(y) kaikilla x, y ∈ E,
(N2) p(λx) = |λ|p(x) kaikilla x ∈ E ja λ ∈ K, ja
(N3) p(x) = 0 jos ja vain jos x = 0̄.

Tavallisesti merkitään ||x|| = p(x). Paria (E, || · ||) sanotaan normiavaruudeksi.

Kuvaus p : E → [0,∞) on seminormi E:ssä jos se toteuttaa edellisen määritelmän muut
ehdot paitsi ei välttämättä ehtoa (N3). Seminormi p määrittää normin tekijäavaruuteen E/ ∼,
missä x ∼ y joss p(x− y) = 0. (Semi)normia p(·) merkitään usein || · ||.

Esimerkkejä 2.4. (1) Avaruudessa Rn käytetään yleensä euklidista normia

||x||2 =

√√√√ n∑
i=1

x2i , x = (x1, . . . , xn).

Hieman myöhemmin korvataan potenssi 2 yleisemmällä luvulla p ja annetaan ulottuvuuden n
mennä äärettömään. Näin saadaan avaruus ℓp:
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(2) Olkoon p ∈ [1,∞). Tällöin ℓp-avaruus määritellään normiavaruutena

ℓp :=

x = (xn)
∞
n=1 : ||x||p =

(
∞∑
n=1

|xn|p
) 1

p

<∞

 ,

missä xn ∈ K ja yhteenlasku ja skalaarilla kertominen on määritelty koordinaateittain:

(xn) + (yn) = (xn + yn) ja λ(xn) = (λxn).

(3) Olkoon A joukko ja

B(A,K) :=

{
f : A→ K : ||f ||∞ := sup

t∈A
|f(t)| <∞

}
.

Tämä on rajoitettujen kuvausten A→ K vektoriavaruus, jos asetetaan

(f + g)(t) = f(t) + g(t), (λf)(t) = λf(t) kun f, g ∈ B(A,K), λ ∈ K.

Kuvaus || · ||∞ on normi B(A,K):ssa. (Harjoitustehtävä)
(4) Edellisen kohdan erikoistapauksena valitsemalla A = {1, . . . , n} saadaan normi

||x||∞ := max(|x1|, . . . , |xn|),

missä x = (x1, . . . , xn) ∈ Rn.
(5) Toinen kohdan (2) erikoistapaus saadaan asettamalla A = N. Tällöin merkitään

ℓ∞ := B(N,K) =

{
x = (xn)

∞
n=1 : xn ∈ K, ||x||∞ = sup

n∈N
|xn| <∞

}
.

Yksinkertainen tapa tuottaa lisää normiavaruuksia on ottaa normiavaruuksien vektorialiava-
ruuksia.

Lause 2.5. Jokainen normiavaruuden (E, || · ||) vektorialiavaruus F on normiavaruus E:n
indusoimalla normilla.

Esimerkkejä 2.6. (1) Välin [0, 1] jatkuvien kuvausten avaruutta C([0, 1]) voidaan tutkia vaik-
kapa normiavaruuden (B([0, 1],K, || · ||∞)) aliavaruutena.

(2) Avaruuden ℓ∞ eräitä jonoaliavaruuksia:

c := {(xn)∞n ∈ ℓ∞ : lim
n→∞

xn on olemassa},

c0 := {(xn)∞n ∈ ℓ∞ : lim
n→∞

xn = 0}.

Lause 2.7. Olkoon (E, || · ||) normiavaruus. Tällöin

(1) kaikilla x, y ∈ E on voimassa∣∣∣||x|| − ||y||
∣∣∣ ≤ ||x− y||.

Erityisesti, kuvauksen normi x 7→ ||x|| on tasaisesti jatkuva E:ssä.
(2) kuvaus d : E × E → [0,∞), d(x, y) = ||x− y|| on metriikka avaruudessa E.

Todistus. (Helppo) □

Normiavaruudet ovat siis metrisiä avaruuksia ja voidaan puhua normiavaruuden avoimista
joukoista, jatkuvuudesta jne. Normiavaruudet ovat kuitenkin usein hyvin suuria:
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Esimerkki 2.8. Normiavaruus (ℓ∞, || · ||∞) ei ole separoituva. Tämä nähdään ottamalla ylinu-
meroituva joukko (muista, että joukon potenssijoukko on aina mahtavampi kuin joukko itse)

F = {χA : A ⊂ N} ⊂ ℓ∞,

missä

χA(x) =

{
1, jos x ∈ A

0, jos x /∈ A
.

Jokaiselle A,B ⊂ N on ||χA − χB||∞ = 1 jos A ̸= B. Siispä {B(f, 1/2)}f∈F on ylinumeroitu-
va kokoelma pistevieraita avoimia joukkoja ℓ∞:ssä ja siten ℓ∞ ei ole separoituva Lauseen 1.3
nojalla.

Lisäksi ääretönulotteisissa normiavaruuksissa avoimet ja suljetut joukot voivat olla joskus
ensinäkemältä yllättäviä verrattuna Euklidisiin avaruuksiin.

Esimerkki 2.9. Olkoon

A = {(xn)∞n=1 ∈ c0 : |xn| <
1

n
kaikilla n ∈ N}.

Tällöin A ei ole avoin avaruudessa (c0, || · ||∞).
Esimerkiksi 0̄ = (0, 0, . . . ) ∈ A, mutta kaikilla r > 0 on olemassa m ∈ N siten, että 1

n
< r, ja

tällöin jolle (xn)
∞
n=1, jossa xn = 1

n
, jos n = m ja xn = 0 muuten, pätee (xn)

∞
n=1 ∈ B(0̄, r) \ A.

Siten 0̄ ei ole A:n sisäpiste eikä A ole avoin.

Normiavaruus (E, ||·||) on täydellinen, jos (E, ||·||) on täydellinen metrinen avaruus. Täydellistä
normiavaruutta kutsutaan Banach-avaruudeksi.

Lause 2.10. Jokainen normiavaruus (E, || · ||1) voidaan täydellistää, eli on olemassa Banach-
avaruus (Ē, || · ||2) siten, että E on tiheä avaruudessa (Ē, || · ||2) ja ||x||1 = ||x||2 kaikilla x ∈ E.

Todistus. (Harjoitustehtävä, vertaa Lauseeseen 1.2.) □

Lause 2.11. Avaruus (ℓp, ∥ · ∥p) on Banach-avaruus kaikilla p ∈ [1,∞].

Todistus. Todistus p:n äärellisille arvoille nähdään myöhemmin Lp-avaruuksien tapauksessa.
Seuraavassa lauseessa nähdään tapaus p = ∞ yleisemmässä kontekstissa. □

Lause 2.12. (B(A,K), || · ||∞) on Banach-avaruus.

Todistus. Olkoot (xn) Cauchy-jono avaruudessa (B(A,K), || · ||∞), ϵ > 0 ja t ∈ A. Koska on
olemassa nϵ ∈ N siten, että

|xk(t)− xm(t)| ≤ ||xk − xm||∞ < ϵ kaikilla k,m ≥ nϵ

on (xk(t))
∞
k=1 Cauchy-jono avaruudessaK. KoskaK on täydellinen, on olemassa x(t) := limn→∞ xn(t) ∈

K.
Todistaaksemme lauseen väite, tulee nyt osoittaa, että

(1) x ∈ (B(A,K), || · ||∞) ja
(2) xn → x kun n→ ∞ avaruudessa (B(A,K), || · ||∞).

Olkoot ϵ > 0 ja nϵ ∈ N kuten yllä. Kun m ≥ nϵ, saadaan

||xm − x||∞ = sup
t∈A

|xm(t)− x(t)| ≤ sup
t∈A

lim
k→∞

|xm(t)− xk(t)| ≤ ϵ,
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