#### Topological states in van der Waals materials



Jyväskylä Summer School "Emergent Quantum Matter in Artificial Two-dimensional Materials" Friday August 12<sup>th</sup> 2022

## Schedule for the lecture

- 40 min lecture
- 15 min break
- 40 min lecture
- 15 min break
- 40 min lecture



Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

## Today's plan

- The quantum Hall effect in 2D materials
- Van der Waals Chern insulators
- Van der Waals quantum spin Hall insulators
- Van der Waals quantum valley Hall insulators
- Topological phase transitions

## Topological van der Waals materials



# Topology in electronic systems



#### We can classify Hamiltonians according to topological invariants



## The role of a topological invariant

Hamiltonians with different topological invariants can not be deformed one to another without closing the gap

$$C = 0 \qquad \qquad C = 1$$



University of Jyväskylä Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

## The consequence of different topological invariants



Topological excitations appear between topologically different systems

University of Jyväskylä

Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

## The edge states of the quantum Hall effect



#### The edge states of the quantum Hall effect are topological excitations

University of Jyväskylä

Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

## The edge states of the quantum Hall effect



#### The edge states of the quantum Hall effect are topologically protected

## Four topological states in 2D materials

#### **Chern insulators**



Quantum spin Hall insulators



Quantum valley Hall insulators



Topological superconductors



Chiral states Electronics

Twisted graphene bilayer

Helical states Spintronics

1T'-WSe

Valley-helical states Valleytronics

Bilayer graphene

Majorana excitations

Topological quantum computing

CrBr<sub>3</sub>/NbSe<sub>2</sub>

## Four topological states in 2D materials

**Chern insulators** 

Quantum spin Hall insulators Quantum valley Hall insulators Topological superconductors

$$C = 0, 1, 2, \dots$$
  $Z_2 = 0, 1$   $C_V = 0, 1, 2, \dots$   $C = 0, 1, 2, \dots$ 

Chern number $Z_2$  invariantValley Chern numberChern numberTwisted graphene<br/>bilayer $1T'-WSe_2$ Bilayer graphene $CrBr_3/NbSe_2$ 

Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials" Location of states in a Chern insulator

States at zero energy for different chemical potentials in a Chern insulator



States in the gap are located at the edge, where above the gap states are located in the bulk

## The quantum Hall effect

## The quantum Hall effect

#### Take graphene in the presence of a very large magnetic field



Apply a magnetic field in z

Measure a current in x



Apply a voltage in y

 $J_x = \sigma_{xy} V_y \qquad \sigma_{xy} = 0, 1, 2, 3$ 

Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

## The quantum Hall effect



Each band (a.k.a Landau level), contributes with Chern number +1

## The quantum Hall effect

### How can an insulator have conductivity?

Bulk band-structure



Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

## The quantum Hall effect

#### The bulk of a quantum Hall state is insulating



## Hall conductivity in an insulator

$$\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k} = \sum_{\alpha} C_{\alpha} = C$$

The Chern number for each band is quantized

An insulator can have a finite (and quantized) Hall conductivity

 $C_{\alpha} = \int \Omega_{\alpha}(\mathbf{k}) d^2 \mathbf{k} = 0, \pm 1, \pm 2, \dots$ 

This is a simple example of a topological state of matter

## The quantum Hall effect

#### **Real space**



University of Jyväskylä Summer SC

Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

## The quantum Hall effect in a 2D TMDC



# 2D electrons in a magnetic field

University of Jyväskylä Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

## Coupling electrons to a gauge field

#### The continuum limit

$$H = \frac{p^2}{2}$$

Given the kinetic energy without magnetic field

By replacing momentum by the canonical momentum we recover the equations of motion in a magnetic field

$$H = \frac{\Pi^2}{2}$$
  $\Pi = \mathbf{p} + \mathbf{A}$  Canonical momentum

Summer school 2022 "Emergent guantum matter in artificial two-dimensional materials" University of Jyväskylä

## **Coupling electrons** to a gauge field

$$H = \frac{\Pi^2}{2}$$
  $\Pi = \mathbf{p} + \mathbf{A}$  Canonical momentum

 $p_{\alpha} = -i\partial_{\alpha}$  Quantized momentum

#### Hamiltonian for electrons in a magnetic field

$$\begin{split} H &= \frac{(\sum_{\alpha} -i\partial_{\alpha} + A_{\alpha})^2}{2} & \Psi(\mathbf{r}) & \text{Gauge #1} \\ H &= \frac{(\sum_{\alpha} -i\partial_{\alpha})^2}{2} & e^{i\int_0^{\mathbf{r}} \mathbf{A}(\mathbf{r}')d\mathbf{r}'}\Psi(\mathbf{r}) & \text{Gauge #2} \end{split}$$

#### Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials" Coupling electrons to a magnetic field in a tight binding model

Given a tight-binding model without magnetic field

$$H = \sum t_{ij} c_i^{\dagger} c_j$$

Coupling to a magnetic field transforms the hoppings as

$$t_{ij} \to e^{i \int_{\mathbf{r}_i}^{\mathbf{r}_j} \mathbf{A}(\mathbf{r}') d\mathbf{r}'} t_{ij}$$

Leading (in the Landau gauge) to the Hamiltonian

$$H = \sum t_{ij} e^{iB(x_i - x_j)(y_i + y_j)} c_i^{\dagger} c_j$$

## Quantum Hall effect and quasiperiodicity

Let us take the Hamiltonian in a magnetic field, and solve in a square ribbon

$$H = \sum t_{ij} e^{iB(x_i - x_j)(y_i + y_j)} c_i^{\dagger} c_j$$
  
Fourier transform in the infinite direction 
$$H = \sum_n c_n^{\dagger} c_{n+1} + h.c. + 2\sum_n \cos(Bn) c_n^{\dagger} c_n$$

The spectrum of 2D quantum Hall is the one of a 1D quasiperiodic moire

## Quantum Hall effect and quasiperiodicity

$$H = \sum t_{ij} e^{iB(x_i - x_j)(y_i + y_j)} c_i^{\dagger} c_j$$



The spectrum of 2D quantum Hall is the one of a 1D quasiperiodic moire

#### Two ways of coupling electrons to a magnetic field

#### **Continuum limit**

Schrodinger electrons  $H = \frac{\Pi^2}{2}$ 

Dirac electrons

ctrons 
$$H = \sum_{lpha} \Pi_{lpha} \sigma_{lpha}$$
 $\Pi = {f p} + {f A}$ 

Canonical momentum

#### **Tight binding model**

$$H = \sum t_{ij} c_i^{\dagger} c_j$$

$$t_{ij} \to e^{i\phi_{ij}} t_{ij}$$

$$\phi_{ij} = \int_{\mathbf{r}_i}^{\mathbf{r}_j} \mathbf{A}(\mathbf{r}') d\mathbf{r}'$$

For typical materials  $\phi_{ij} \sim 10^{-4} \sim 10T$ 

Peierls substitution



### 10-15 min break

#### *(optional) to discuss during the break*

Given Chern numbers below, which image show the right number of edge states?

$$C = 1$$
  $C = -2$ 



Landau levels

## Landau levels

Band-structure in the quantum Hall state

University of Jyväskylä



The energy levels are



For a Dirac equation they would be

$$E \sim \sqrt{nB}$$

 $E\sim 50 meV$ 

## The gauge of the magnetic potential

Let us consider the simplest magnetic field

$$\mathbf{B} = (0, 0, B_z)$$

We can write down two different gauges for the magnetic potential  ${f B}=
abla imes {f A}$ 

Landau gauge

$$\mathbf{A} = (-B_z y, 0, 0)$$

Respects one translational symmetry

$$[p_x, A_\alpha] = 0$$

Symmetric gauge

$$\mathbf{A} = \frac{1}{2}(-B_z y, B_z x, 0)$$

Convenient for the fractional quantum Hall wavefunction

## Electrons coupled to a magnetic field

Let us take a conventional electron gas coupled to a gauge field



Minimal gauge coupling

## Landau levels of non-Dirac 2D materials

Lets take a quadratic Hamiltonian

$$H \sim p_x^2 + p_y^2$$

And add a magnetic field (minimal coupling)  $\mathbf{p} o \mathbf{p} + \mathbf{A}$ 

Take the Landau gauge

$$\mathbf{A} = (0, -Bx, 0)$$
$$\nabla \times \mathbf{A} = (0, 0, B)$$

Plugging the magnetic potential in we get  $H \sim p_x^2 + B^2 x^2$  (this looks like an harmonic oscillator)

Quantized levels in a magnetic field  $E_n \sim nB$ 

## Landau levels of a 2D TMDC



As the magnetic field is increased, flat band Landau levels appear

Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

## The Landau levels of graphene

Band structure of a honeycomb lattice





Effective Dirac equations
#### Landau levels of graphene

H

Lets take a Dirac Hamiltonian

University of Jyväskylä

$$\sim \begin{pmatrix} 0 & p_x + ip_y \\ p_x - ip_y & 0 \end{pmatrix}$$

 $\mathbf{p} 
ightarrow \mathbf{p} + \mathbf{A}$ 

Take the Landau gauge

$$\mathbf{A} = (0, -Bx, 0)$$
$$\nabla \times \mathbf{A} = (0, 0, B)$$

Plugging the magnetic potential in we get  $H^2 \sim p_x^2 + B^2 x^2$ (this looks like an harmonic oscillator)  $E_n^2 \sim nB$ Quantized levels in a magnetic field  $E_n \sim \sqrt{nB}$ 

#### The Landau levels in graphene



#### Graphene spectra in a magnetic field



A magnetic field largely enhances the DOS in graphene, allowing for instabilities to appear

#### The Landau levels in graphene



As the magnetic field is increased, flat band Landau levels appear

#### The zeroth Landau level in graphene

In the Dirac equation, each valley contributed with one Landau level at E=0

$$\Psi_K^{0LL} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \begin{array}{l} \text{Sublattice A} \\ \text{Sublattice B} \end{array}$$

$$\Psi^{0LL}_{K'} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 Sublattice A Sublattice B

In the absence of symmetry breaking

In the presence of symmetry breaking

Symmetry breaking the zeroth Landau level gives rise to different topological states

### The zeroth Landau level in graphene



The sublattice polarization of the 0<sup>th</sup> LL allows opening two different gaps in the QH regime

## Two topologically trivial gaps in the graphene quantum Hall state



Both CDW and canted antiferromagnetism lead to gapped system without edge modes

# Location of the edge states in the quantum Hall state in graphene

States at zero energy for different chemical potentials in a Chern insulator



States between LL are located at the edge, while LL are located in the bulk

# From a Chern insulator to a quantum Hall state



If one starts if a Chern insulator, the chiral edge states become the quantum Hall edge modes

#### Chern insulators in twisted graphene bilayers



The flat bands of twisted bilayers are pseudo Landau levels



Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

# Chern insulators in twisted graphene bilayers

### Interactions in twisted bilayers give rise to a valley polarized state, with finite Chern number



hBN encapsulation allows to lift the Dirac points

# Van der Waals quantum spin Hall insulators

#### Edge states in quantum spin Hall insulators

In a quantum spin Hall insulator, opposite spin propagate in opposite directions



Two copies of a quantum Hall insulator, one for each spin channel

#### The relation between two topological states

#### **Chern insulators**



Chiral modes Break time-reversal symmetry

#### **Quantum spin Hall insulators**



Helical modes Do not break time-reversal symmetry Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials" The quantum spin Hall state driven by magnetic field in graphene



As an in-plane field in increased, a trivial QH state transforms in a quantum spin Hall state



Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

### Chern insulators

#### The bulk is insulating



### The edge has chiral states (without an external magnetic field)

Hall conductivity (Chern number)

$$\sigma_{xy} = \sum_{\alpha \in occ} \int \Omega_{\alpha} d^2 \mathbf{k} = \sum_{\alpha} C_{\alpha} = C$$

$$\Omega_{\alpha} = \partial_{k_x} A_y^{\alpha} - \partial_{k_y} A_x^{\alpha}$$

$$A^{\alpha}_{\mu} = i \langle \partial_{k_{\mu}} \Psi_{\alpha} | \Psi_{\alpha} \rangle$$

#### Two different gaps in a 2D material



The total Chern number is nonzero, driven by breaking of time-reversal symmetry

#### Two different gaps in a 2D material



The total Chern number is zero, driven by breaking of inversion symmetry

### The Hamiltonian of a topological insulator

Look for a system that has massive Dirac equations

$$H(p_x, p_y) = p_x \sigma_x + p_y \kappa \sigma_y + m \sigma_z = \begin{pmatrix} m & p_x + i \kappa p_y \\ p_x - i \kappa p_y & -m \end{pmatrix}$$
  
The finite mass gives rise to a local Chern number  $C_{s,\alpha} = \frac{1}{2} \operatorname{sign}(m) \operatorname{sign}(\kappa)$ 

If the mass for spin up is opposite than for spin down, then

Chern number Spin Chern number  $C = C_{\uparrow} + C_{\downarrow} = 0 \qquad C_S = C_{\uparrow} - C_{\downarrow} = \pm 2$ 

In a system with spin-orbit coupling, spin dependent masses can be generated

### Quantum spin Hall insulators

#### Chern insulator for spin up

$$C^{\uparrow} = 1$$



#### Chern insulator for spin down

$$C^{\downarrow} = -1$$



Spin-orbit coupling (SOC) can drive a quantum spin Hall state  $\vec{L} \cdot \vec{S} \sim L_z S_z$  SOC acts as a magnetic field with opposite signs for opposite spins

### Quantum spin Hall insulators

Opposite spins propagate in opposite directions (helical gas)



### Quantum spin Hall insulators



#### Disorder in quantum spin Hall insulators



Disorder that breaks time reversal symmetry opens a gap in the topological states



#### 10-15 min break

#### *(optional) to discuss during the break*

Which of the two schematics depicts a correct interface between a Chern and spin Hall insulator?





## Valley Chern insulators 2D materials

#### The structure of bilayer graphene

Let us now focus on a graphene bilayer with AB stacking



Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials" The electronic structure of bilayer graphene

University of Jyväskylä

Graphene bilayers open a gap when an interlayer bias is applied



# Electrically controllable topology in graphene bilayers



The Berry curvature of the bands is controllable with an interlayer bias

University of Jyväskylä

Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

# Biased bilayer graphene, pseudo-helical states



Edge states appear in the presence of a bias between layers

### **Biased graphene bilayers**



A valley Hall state generates counter propagating pseudo-helical modes

#### Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials" Bias controlled electronic structure in ABC trilayer graphene



#### Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials" Valley Hall states in ABC graphene multilayers



Other graphene multilayers sub ABC trilayer also show valley Hall effect with an applied field

# Topological phase transitions

### Topological protection and edge states



Transforming between Hamiltonians with different topological invariant closes a gap

#### Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials" TOPOIOGICAL phase transition in the bulk, Chern insulator



A gap closing in the bulk leads to a change in the Berry curvature of the occupied states

#### Topological phase transition in the edge, Chern insulator



A gap closing in the bulk leads to a change in the chiral edge states
Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

University of Jyväskylä

### Topological phase transition in the bulk, quantum spin Hall insulator



A gap closing in the bulk leads to a change in the  $Z_2$  invariant

Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

University of Jyväskylä

## Topological phase transition in the edge, quantum spin Hall insulator



A gap closing in the bulk leads to a change in the chiral edge states

Summer school 2022 "Emergent quantum matter in artificial two-dimensional materials"

University of Jyväskylä

# Topological phase transition in artificial topological superconductors



As the chemical potential is changed, a transition from topological to trivial takes place

### For the exercise session this afternoon

### **Download the Jupyter-notebook from**

https://github.com/joselado/jyvaskyla\_summer\_school\_2022/blob/main/sessions/session5.ipynb

#### The tasks during the exercise sessions

#### You will see examples with the code



#### You have to modify them, and answer questions

#### Exercise

- · Count how many helical states you have in each edge for the 1D system for each case
- Add Rashba spin-orbit coupling (add\_rashba). Do you still see the edge states? Discuss why
- Add a second neighbor hopping (g.get\_hamitlonian(tij=[1.0.2]). Do you still see the edge states? Discuss why