
  

Topological states in van der Waals materials

Friday August 12th 2022

Jyväskylä Summer School “Emergent Quantum Matter in Artificial Two-dimensional Materials”



  

Schedule for the lecture

● 40 min lecture

● 15 min break

● 40 min lecture

● 15 min break

● 40 min lecture



  

Today’s plan

● The quantum Hall effect in 2D materials

● Van der Waals Chern insulators

● Van der Waals quantum spin Hall insulators

● Van der Waals quantum valley Hall insulators

● Topological phase transitions



  

Topological van der Waals materials
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Sym

Topology in electronic 
systems



  

Topological invariant
in a Hamiltonian

We can classify Hamiltonians according to topological invariants

Hamiltonian Wavefunction

Metric
(Berry curvature)

Topological invariant
(Chern number)



  

The role of a topological invariant

Hamiltonians with different topological invariants
can not be deformed one to another without closing the gap



  

The consequence of different
topological invariants

Trivial system Topological systemTopologically
protected
excitation

Topological excitations appear between topologically different systems



  

The edge states of the
quantum Hall effect

Trivial system Topological systemTopologically
protected

chiral state

The edge states of the quantum Hall effect are topological excitations



  

The edge states of the
quantum Hall effect

The edge states of the quantum Hall effect are topologically protected

No backscattering channel

Perfect conductance

Topological protection



  

Four topological states in 2D materials

Quantum spin
Hall insulators

Chern insulators Topological
superconductors

Chiral states Helical states Majorana excitations

Electronics Spintronics Topological quantum
computing

Quantum valley
Hall insulators
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Valleytronics

Twisted graphene
bilayer

1T’-WSe
2 Bilayer graphene CrBr

3
/NbSe

2



  

Four topological states in 2D materials

Quantum spin
Hall insulators

Chern insulators Topological
superconductors

Quantum valley
Hall insulators

Twisted graphene
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2
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2
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Location of states
in a Chern insulator

States in the gap are located at the edge, where above the gap states are located in the bulk

States at zero energy for different chemical potentials in a Chern insulator



  

The quantum Hall effect



  

The quantum Hall effect

Take graphene in the presence of a very large magnetic field

Apply a voltage in y

Measure a current in x

Apply a magnetic field in z



  

The quantum Hall effect

Band-structure in the quantum Hall state Hall conductivity

Each band (a.k.a Landau level), contributes with Chern number +1



  

The quantum Hall effect

How can an insulator have conductivity?

Fermi energy

Bulk band-structure



  

The quantum Hall effect

The bulk of a quantum Hall state is insulating

The edge has chiral states

Chiral: propagating
only in one direction



  

Hall conductivity in an insulator

An insulator can have a finite
(and quantized) Hall conductivity

The Chern number for each band is quantized

This is a simple example of
a topological state of matter



  

The quantum Hall effect

Real space

Band structure

Chiral
state

Chiral
state



  

The quantum Hall effect
in a 2D TMDC

Landau levels

Edge modes



  

2D electrons in
a magnetic field



  

Coupling electrons
to a gauge field

The continuum limit

Given the kinetic energy without magnetic field

By replacing momentum by the canonical momentum
we recover the equations of motion in a magnetic field

Canonical momentum

Magnetic field Magnetic vector potential



  

Coupling electrons
to a gauge field

Canonical momentum

Quantized momentum

Hamiltonian for electrons in a magnetic field

Gauge #1

Gauge #2



  

Coupling electrons to a magnetic field in a 
tight binding model

Given a tight-binding model without magnetic field

Coupling to a magnetic field transforms the hoppings as

Leading (in the Landau gauge) to the Hamiltonian



  

Quantum Hall effect and quasiperiodicity

Let us take the Hamiltonian in a magnetic field, and solve in a square ribbon

Fourier transform in
the infinite direction

The spectrum of 2D quantum Hall is the one of a 1D quasiperiodic moire



  

Quantum Hall effect and quasiperiodicity

The spectrum of 2D quantum Hall is the one of a 1D quasiperiodic moire

Landau
levels



  

Two ways of coupling electrons to a magnetic field

Continuum limit Tight binding model

Canonical momentum Peierls substitution

Dirac electrons

Schrodinger electrons

For typical materials



  

Break

10-15 min break

(optional) to discuss during the break

Given Chern numbers below, which image show the right number of edge states?



  

Landau levels



  

Landau levels

The energy levels are

For a Dirac equation they would be

Band-structure in the quantum Hall state



  

The gauge of the magnetic potential

Let us consider the simplest magnetic field

We can write down two different gauges for the magnetic potential

Symmetric gaugeLandau gauge

Respects one translational symmetry

Convenient for the fractional
quantum Hall wavefunction



  

Electrons coupled to a magnetic field

Momentum
Gauge potential

Minimal gauge coupling

Let us take a conventional electron gas coupled to a gauge field



  

Landau levels of non-Dirac 2D materials

Lets take a quadratic Hamiltonian

And add a magnetic field (minimal coupling) 

Take the Landau gauge

Plugging the magnetic potential in we get

(this looks like an harmonic oscillator)

Quantized levels in a magnetic field



  

Landau levels of a 2D TMDC

As the magnetic field is increased, flat band Landau levels appear



  

The Landau levels of graphene

Band structure of a honeycomb lattice

Effective Dirac equations



  

Landau levels of graphene

Lets take a Dirac Hamiltonian

And add a magnetic field (minimal coupling) 

Take the Landau gauge

Plugging the magnetic potential in we get

(this looks like an harmonic oscillator)

Quantized levels in a magnetic field



  

The Landau levels in graphene

Landau levels



  

Graphene spectra in a magnetic field

A magnetic field largely enhances the DOS in graphene, allowing for instabilities to appear



  

The Landau levels in graphene

As the magnetic field is increased, flat band Landau levels appear



  

The zeroth Landau level in graphene

In the Dirac equation, each valley contributed with one Landau level at E=0

Sublattice A

Sublattice B

Sublattice A

Sublattice B

In the absence of symmetry breaking In the presence of symmetry breaking

Symmetry breaking the zeroth Landau level gives rise to different topological states



  

The zeroth Landau level in graphene

The sublattice polarization of the 0th LL allows opening two different gaps in the QH regime



  

Two topologically trivial gaps in the graphene 
quantum Hall state

Both CDW and canted antiferromagnetism lead to gapped system without edge modes



  

Location of the edge states in
the quantum Hall state in graphene

States between LL are located at the edge, while LL are located in the bulk

States at zero energy for different chemical potentials in a Chern insulator



  

From a Chern insulator to a
quantum Hall state

If one starts if a Chern insulator, the chiral edge states become the quantum Hall edge modes



  

Chern insulators in
twisted graphene bilayers

The flat bands of twisted bilayers are pseudo Landau levels



  

Chern insulators in
twisted graphene bilayers

Interactions in twisted bilayers give rise to a valley
polarized state, with finite Chern number

hBN encapsulation allows to lift the Dirac points



  

Sym

Van der Waals quantum 
spin Hall insulators



  

Edge states in quantum spin Hall insulators

In a quantum spin Hall insulator, opposite spin propagate in opposite directions

Two copies of a quantum Hall insulator, one for each spin channel



  

The relation between two topological states

Chern insulators Quantum spin Hall insulators

Chiral modes
Break time-reversal symmetry

Helical modes 
Do not break time-reversal symmetry



  

The quantum spin Hall state
driven by magnetic field in graphene

As an in-plane field in increased, a trivial QH state transforms in a quantum spin Hall state



  

Chern insulators

The bulk is insulating The edge has chiral states
(without an external magnetic field)

Hall conductivity (Chern number)



  

Two different gaps in a 2D material

The total Chern number is nonzero, driven by breaking of time-reversal symmetry 



  

Two different gaps in a 2D material

The total Chern number is zero, driven by breaking of inversion symmetry 



  

The Hamiltonian of a topological insulator

Look for a system that has massive Dirac equations

The finite mass gives rise to a local Chern number

If the mass for spin up is opposite than for spin down, then

Chern number Spin Chern number

In a system with spin-orbit coupling, spin dependent masses can be generated



  

Quantum spin Hall insulators

Chern insulator for spin up Chern insulator for spin down

Spin-orbit coupling (SOC) can drive a quantum spin Hall state

SOC acts as a magnetic field with opposite signs for opposite spins



  

Quantum spin Hall insulators

Opposite spins propagate in opposite directions (helical gas)



  

Quantum spin Hall insulators

The gapless nature is protected by Kramer’s theorem

Time-reversal
symmetry

1T-WTe
2



  

Disorder in quantum spin Hall insulators

Disorder that breaks time reversal symmetry opens a gap in the topological states



  

Break

10-15 min break

(optional) to discuss during the break

Which of the two schematics depicts a correct interface between a Chern and spin Hall insulator?



  

Sym

●Valley Chern insulators
2D materials



  

The structure of bilayer graphene

Let us now focus on a graphene bilayer with AB stacking

And we will add an interlayer bias



  

The electronic structure
of bilayer graphene

Graphene bilayers open a gap when an interlayer bias is applied



  

Electrically controllable topology in graphene 
bilayers

The Berry curvature of the bands is controllable with an interlayer bias



  

Biased bilayer graphene,
pseudo-helical states

Edge states appear in the presence of a bias between layers



  

Biased graphene bilayers

A valley Hall state generates counter propagating pseudo-helical modes



  

Bias controlled electronic
structure in ABC trilayer graphene

The Berry curvature of the bands is controllable with an interlayer bias



  

Valley Hall states in
ABC graphene multilayers

Other graphene multilayers sub ABC trilayer also show valley Hall effect with an applied field



  

Sym

●Topological phase 
transitions



  

Topological protection and edge states

Trivial system Topological systemTopologically
protected

chiral state

Transforming between Hamiltonians with different topological invariant closes a gap



  

Topological phase transition in the bulk, 
Chern insulator

A gap closing in the bulk leads to a change in the Berry curvature of the occupied states



  

Topological phase transition
in the edge, Chern insulator

A gap closing in the bulk leads to a change in the chiral edge states



  

Topological phase transition in the bulk,
quantum spin Hall insulator

A gap closing in the bulk leads to a change in the Z
2
 invariant



  

Topological phase transition in the edge,
quantum spin Hall insulator

A gap closing in the bulk leads to a change in the chiral edge states



  

Topological phase transition in
artificial topological superconductors

As the chemical potential is changed, a transition from topological to trivial takes place



  

For the exercise session this afternoon

Download the Jupyter-notebook from

https://github.com/joselado/jyvaskyla_summer_school_2022/blob/main/sessions/session5.ipynb

The tasks during the exercise sessions

You will see examples with the code You have to modify them, and answer questions
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