
  

Magnetic 2D materials

Wednesday August 10th 2022
Jyväskylä Summer School “Emergent Quantum Matter in Artificial Two-dimensional Materials”



  

Schedule for the lecture

● 40 min lecture
● 15 min break
● 40 min lecture
● 15 min break
● 40 min lecture



  

Today’s plan

● The origin of magnetic exchange
● Antiferromagnets, ferromagnets and multiferroics
● Magnetic order and magnons in 2D materials
● Van der Waals quantum spin liquids
● Van der Waals heavy-fermion Kondo insulators



  

Van der Waals magnetic materials
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Emergent excitations in
van der Waals magnets

Magnons Spinons

S=1
No charge S=1/2

No charge



  

The role of electronic interactions

Electronic interactions are responsible for symmetry breaking 

Broken 
time-reversal symmetry

Broken
gauge symmetry

Broken
crystal symmetry

Classical magnets Charge density wave Superconductors



  

Interactions and mean field

Free Hamiltonian Interactions

What are these interactions coming from?
● Electrostatic (repulsive) interactions
● Mediated by other quasiparticles (phonons, magnons, plasmons,...)

The net effective interaction can be attractive or repulsive

Magnetism is promoted by repulsive interactions



  

A simple interacting Hamiltonian

Free Hamiltonian Interactions 
(Hubbard term)

What is the ground state of this Hamiltonian?

MagnetismSuperconductivity



  

The mean-field approximation

Four fermions
(not exactly solvable)

Two fermions
(exactly solvable)

For 

Mean field: Approximate four fermions by two fermions times expectation values

Magnetic order

i.e. repulsive interactions



  

The mean-field approximation

Non-collinear magnetic order

The non-collinear mean-field Hamiltonian



  

A Hamiltonian for a
weakly correlated magnet

Free Hamiltonian Exchange term

Her we assume that interactions are weak (in comparison with the kinetic energy)

What if interactions are much stronger than the kinetic energy?



  

Solving the interacting model
at the mean-field level in a 1D chain

We will take the interacting model and solve it at the mean field level

Interaction-induced splitting
Filling 0.2 (full would be 1)



  

Solving the interacting model
at the mean-field level in a 1D chain

Let us do again a 1D, but now with 2 sites per unit cell and at half filling



  

Competing solutions
for a magnetic state

Let us now consider two selfconsistent solutions for the interacting model

Only once of them is the true ground state, but which one it is?



  

Competing solutions
for a magnetic state

Let us now compute the energy difference between the two configurations

For strong interactions, the AF configuration always has lower energy



  

The critical interaction
for magnetic ordering

Lets take the Hamiltonian

Do we have magnetism for any value of U?

In general, in the weak coupling limit magnetism appears when

Density of statesRepulsive interaction



  

The critical interaction
for magnetic ordering

Semimetals Metals Flat bands

No low coupling instability Arbitrarily small interactions
Controlled by DOS



  

The critical interaction
for magnetic ordering

Magnetic instabilities occur once interactions are strong enough

For interactions below a threshold, no magnetic order occurs



  

The critical interaction
for magnetic ordering

No magnetism
Non-saturated
magnetization

Saturated magnetization
(half metal)

Depending on the strength of interactions, we can have three different regimes



  

Magnetic instabilities
in a flat band system

Magnetic instabilities occur for arbitrarily small interactions



  

Magnetic instabilities
in a flat band system

In the flat band regime, any non-zero interaction gives rise to a magnetic instability



  

Sym

The strongly localized limit 
and the Heisenberg model



  

From a weak magnet to
the strongly localized limit

For large interaction strength, the system develops a local quantized magnetic moment



  

The strongly localized limit

Let us start with a Hubbard model dimer

Now in the limit

The full Hilbert space at half filling is

Levels



  

The strongly localized limit

Let us start with a Hubbard model dimer

The energies in the strongly localized limit are



  

The strongly localized limit

Let us start with a Hubbard model dimer

The low energy manifold is

Just one electron in each site for 

Local S=1/2 at each site



  

The strongly localized limit

Effective Heisenberg model in the localized limit

We can compute J using second order perturbation theory

“pristine” Hamiltonian
(Hubbard)

“perturbation” Hamiltonian
(hopping)



  

The strongly localized limit

Effective Heisenberg model in the localized limit

We can compute J using second order perturbation theory

Ground state Virtual state



  

The Heisenberg model
For a generic Hamiltonian in a generic lattice

In the strongly correlated (half-filled) limit we obtain a Heisenberg model



  

The Heisenberg model
Non-Hubbard (multiorbital) models also yield effective Heisenberg models 

In those generic cases, the exchange couplings can be positive or negative

Antiferromagnetic coupling Ferromagnetic coupling

Spin-orbit coupling introduces anisotropic couplings



  

The Heisenberg model

Antiferromagnetic coupling Ferromagnetic coupling

Classical ground states



  

Antiferromagnetism driven by 
superexchange

In the honeycomb lattice

In bipartite lattices, the magnetization is collinear

In the square lattice



  

Antiferromagnetism driven by 
superexchange

In the triangular lattice

Geometric frustration promotes non-collinear order at the mean-field level

In the Kagome lattice



  

The origin of ferromagnetic coupling

Exchange interactions can be ferromagnetic if mediated by an intermediate site

Low energy manifold Virtual state (among others)

The sign of the coupling depends on the filling of the d-shell and the angle

CrCl
3
,CrBr

3
,CrI

3

Goodenough-Kanamori rules



  

Non-isotropic exchange coupling
In the presence of spin-orbit coupling, new terms can appear in the Hamiltonian

Promotes
non-collinear order

Antisymmetric exchange Anisotropic exchange

Promotes
easy axis/plane

Kitaev interaction

Promotes
frustration



  

Break

10-15 min break

(optional) to discuss during the break

Which type of magnetic order fulfills



  

Sym

Symmetry breaking in 
graphene multilayers



  

Magnetic symmetry breaking
in graphene multilayers



  

Magnetism in graphene multilayers
Graphene trilayers can have magnetic instabilities driven by repulsive interactions

The more layers a stacking has, the flatter the dispersion



  

Magnetism in graphene multilayers

The more layers a stacking has, the flatter the dispersion



  

Magnetism in graphene bilayers

AB graphene bilayer

Graphene bilayers can have magnetic instabilities driven by repulsive interactions



  

Magnetism in graphene trilayers
Graphene trilayers can have magnetic instabilities driven by repulsive interactions

ABC graphene trilayer



  

Sym

Multiferroic van der Waals 
materials



  

Electric polarization
in a magnetic material

Multiferroics host, simultaneously, magnetism and electric polarization

NiI
2



  

Why are multiferroics rare
If we want both electric and magnetic polarization, interactions must drive both simultaneously

However, magnetic and charge order often compete to open gaps



  

Coupling between magnetism
and polarization

Electric polarization

SOC driven

Wavevector of the spin spiral

Spin rotation axis



  

Sym
Excitations in 2D magnets



  

Excitations in a ferromagnet

Qualitatively, magnons are the fluctuations of the order parameter



  

Excitations in the Heisenberg model
The Heisenberg model is a full-fledged many-body problem

How do we compute its many-body excitations?

Algebraic commutation relations



  

The ferromagnetic Heisenberg model

In the case of a ferromagnetic Heisenberg model, we know the ground state

But how do we compute the excitations?



  

The Holstein–Primakoff transformation

Replace the spin Hamiltonian by a bosonic Hamiltonian

Make the replacement and decouple with mean-field assuming

MagnonSpins



  

Magnons in a nutshell

Increase the spin Destroy a magnon

Decrease the spin Create a magnon

Net magnetization Maximal minus the magnons

Magnons are S=1 excitations that exist over the symmetry broken state



  

Magnon dispersions

Gapless magnons Gapped magnons Dirac magnons



  

Magnons in the presence
and absence of anisotropy

Without anisotropy With anisotropy

Anisotropy in the spin model generates a magnon gap



  

The role of magnons in 2D magnets

Temperature

Correction from magnon population

In the absence of a magnon gap, the correction to the magnetization is infinite

Magnons renormalize the total magnetization



  

Topological magnons
A magnon dispersion can have topological gaps at high energies, leading to topological modes



  

Break

10-15 min break

(optional) to discuss during the break

Which one of these electronic structures has the strongest magnetic instability?



  

Sym

Van der Waals quantum 
spin liquids



  

The Ising dimer

What is the ground state of this Hamiltonian

The Hamiltonian has two ground states (related by time-reversal symmetry)

Each ground state breaks time-reversal symmetry

A symmetry broken antiferromagnet is a macroscopic version of this



  

The quantum Heisenberg dimer

What is the ground state of this quantum Hamiltonian?

The ground state is unique, and does not break time-reversal

The state is maximally entangled

Can we have a macroscopic version of this ground state?



  

Towards quantum-spin liquids

Ferromagnetism Antiferromagnetism Frustrated magnetism

To get a quantum-spin liquid, we should look for frustrated magnetism



  

Frustrated lattices

KagomeTriangular



  

Quasiparticles in a
quantum spin-liquid

The approximation used for magnons breaks down

Quantum spin liquids require

We need a new approximation for the quantum excitations

Let us assume that a certain Hamiltonian realizes a QSL



  

The parton transformation

Transform spin operators to auxiliary fermions (Abrikosov fermions)

The fermions f (spinons) have S=1/2 but no charge

This transformation artificially enlarges the Hilbert space, thus we have to put the constraint

This transformation allow to turn a spin Hamiltonian into a fermionic Hamiltonian



  

The spinon Hamiltonian

We can insert the auxiliary fermions

And perform a mean-field in the auxiliary fermions (spinons)

Enforcing time-reversal symmetry

The exitations of the QSL are described by a single particle spinon Hamiltonian



  

Spinon dispersions

Gapless spinons Gapped spinons Dirac spinons



  

Frustrated magnetism in 1T-TaS
2

Charge-density wave reconstruction, leading to a localized orbital in a                         unit cell 

Strong interactions give rise to local moment formation

Effectively described by an S=1/2 Heisenberg model in a triangular lattice



  

Spinon Fermi surfaces
of gapless QSL

In the class of gapless QSL, different Fermi surfaces can appear
depending on details of the Hamiltonian



  

Sym

Heavy-fermions in van der 
Waals materials



  

The Kondo problem

Conduction electrons

Kondo coupling

We now take a quantum spin S=1/2



  

The Kondo lattice problem
The Kondo lattice problem

Conduction electrons Kondo coupling

Kondo sites



  

Building an artificial heavy fermion state

Lattice of Kondo impurities Dispersive electron gas

Both ingredients coupled through Kondo coupling



  

Building an artificial heavy fermion state

Kondo-lattice model
Conduction electrons form

Kondo singlets with the impurities

Associated with Kondo lattice physics:
- Colossal mass enhancement of electrons
- Quantum criticality
- Unconventional (topological) superconductivity



  

Solving the Kondo lattice problem

Replace the spin sites by auxiliary fermions

This makes the effective Hamiltonian an “interacting” fermionic Hamiltonian



  

Solving the Kondo lattice problem

Now we decouple the fermions with a mean-field approximation

Obtaining a quadratic Hamiltonian

Conduction band dispersion Kondo hybridization



  

Electronic structure of
the Kondo lattice problem

Auxiliary Kondo fermions

Conduction
electrons



  

Electronic structure of
the Kondo lattice problem

The Kondo coupling opens up a gap in the electronic structure



  

Dependence on the Kondo coupling
The heavy-fermion gap becomes bigger as the Kondo coupling increases



  

Spectral function of conduction electrons

The conduction electrons develop a heavy mass due to the Kondo coupling

Nearly flat dispersion



  

Brief theory of heavy-fermions

Kondo physics introduces resonant
pseudo-fermions at the chemical potential Leading to the opening of a heavy-fermion gap

Heterostructures of 1H-TaS
2
/1T-TaS

2



  

For the exercise session this afternoon

Download the Jupyter-notebook from

https://github.com/joselado/jyvaskyla_summer_school_2022/blob/main/sessions/session3.ipynb

The tasks during the exercise sessions

You will see examples with the code You have to modify them, and answer questions
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